scholarly journals Some properties of the de Sitter black holes in three dimensional spacetime

2013 ◽  
Vol 2013 (11) ◽  
Author(s):  
Yongjoon Kwon ◽  
Soonkeon Nam ◽  
Jong-Dae Park
2005 ◽  
Vol 14 (12) ◽  
pp. 2347-2353 ◽  
Author(s):  
CHRIS CLARKSON ◽  
ROY MAARTENS

If string theory is correct, then our observable universe may be a three-dimensional "brane" embedded in a higher-dimensional spacetime. This theoretical scenario should be tested via the state-of-the-art in gravitational experiments — the current and upcoming gravity-wave detectors. Indeed, the existence of extra dimensions leads to oscillations that leave a spectroscopic signature in the gravity-wave signal from black holes. The detectors that have been designed to confirm Einstein's prediction of gravity waves, can in principle also provide tests and constraints on string theory.


2004 ◽  
Vol 21 (4) ◽  
pp. 875-897 ◽  
Author(s):  
Vilson T Zanchin ◽  
Alex S Miranda

2019 ◽  
Vol 28 (12) ◽  
pp. 1950160
Author(s):  
M. B. Tataryn ◽  
M. M. Stetsko

Static black hole with the Power Maxwell invariant (PMI), Born–Infeld (BI), logarithmic (LN), exponential (EN) electromagnetic fields in three-dimensional spacetime with cosmological constant was studied. It was shown that the LN and EN fields represent the Born–Infeld type of nonlinear electrodynamics. It the framework of General Relativity the exact solutions of the field equations were obtained, corresponding thermodynamic functions were calculated and the [Formula: see text] criticality of the black holes in the extended phase-space thermodynamics was investigated.


2006 ◽  
Vol 53 ◽  
pp. 900-911
Author(s):  
P Bieliavsky ◽  
S Detournay ◽  
M Rooman ◽  
Ph Spindel

2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Akram Sadat Sefiedgar

The emergence of the quantum gravitational effects in a very high energy regime necessitates some corrections to the thermodynamics of black holes. In this letter, we investigate a possible modification to the thermodynamics of Schwarzschild anti-de Sitter (SAdS) black holes due to rainbow gravity model. Using the correspondence between a (d+1)-dimensional SAdS black hole and a conformal filed theory ind-dimensional spacetime, one may find the corrections to the Cardy-Verlinde formula from the modified thermodynamics of the black hole. Furthermore, we show that the corrected Cardy-Verlinde formula can also be derived by redefining the Virasoro operator and the central charge.


2005 ◽  
Vol 2005 (07) ◽  
pp. 072-072 ◽  
Author(s):  
Stéphane Detournay ◽  
Domenico Orlando ◽  
P. Marios Petropoulos ◽  
Philippe Spindel

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Hao Geng ◽  
Severin Lüst ◽  
Rashmish K. Mishra ◽  
David Wakeham

Abstract We study the AdS/BCFT duality between two-dimensional conformal field theories with two boundaries and three-dimensional anti-de Sitter space with two Karch-Randall branes. We compute the entanglement entropy of a bipartition of the BCFT, on both the gravity side and the field theory side. At finite temperature this entanglement entropy characterizes the communication between two braneworld black holes, coupled to each other through a common bath. We find a Page curve consistent with unitarity. The gravitational result, computed using double-holographically realized quantum extremal surfaces, matches the conformal field theory calculation.At zero temperature, we obtain an interesting extension of the AdS3/BCFT2 correspondence. For a central charge c, we find a gap $$ \left(\frac{c}{16},\frac{c}{12}\right) $$ c 16 c 12 in the spectrum of the scaling dimension ∆bcc of the boundary condition changing operator (which interpolates mismatched boundary conditions on the two boundaries of the BCFT). Depending on the value of ∆bcc, the gravitational dual is either a defect global AdS3 geometry or a single sided black hole, and in both cases there are two Karch-Randall branes.


2019 ◽  
Vol 28 (03) ◽  
pp. 1950049 ◽  
Author(s):  
Kai Lin ◽  
Fei-Hung Ho ◽  
Wei-Liang Qian

In this work, we investigate the [Formula: see text]-dimensional charged static black hole solutions in the Einstein-æther theory. By taking the metric parameter [Formula: see text] to be [Formula: see text], and [Formula: see text], we obtain the spherical, planar, and hyperbolic spacetimes, respectively. Three choices of the cosmological constant, [Formula: see text], [Formula: see text] and [Formula: see text], are investigated, which correspond to asymptotically de Sitter, flat and anti-de Sitter spacetimes. The obtained results show the existence of the universal horizon in higher dimensional cases which may trap any particle with arbitrarily large velocity. We analyze the horizon and the surface gravity of four- and five-dimensional black holes, and the relations between the above quantities and the electrical charge. It is shown that when the aether coefficient [Formula: see text] or the charge [Formula: see text] increases, the outer Killing horizon shrinks and approaches the universal horizon. Furthermore, the surface gravity decreases and approaches zero in the limit [Formula: see text] or [Formula: see text], where [Formula: see text] is the extreme charge. The main features of the horizon and surface gravity are found to be similar to those in [Formula: see text] case, but subtle differences are also observed.


2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
M Dehghani ◽  
M Badpa

Abstract The coupled scalar, electromagnetic, and gravitational field equations of Einstein–dilaton gravity theory have been solved in a three-dimensional energy-dependent spacetime and in the presence of power-law nonlinear electrodynamics. The scalar potential is written as the linear combination of two exponential functions, and two families of three-dimensional dilatonic black hole solutions have been introduced which indicate the impacts of rainbow functions on the spacetime geometry. Through consideration of curvature scalars, it has been found that the asymptotic behavior of the solutions is neither flat nor anti-de Sitter. It has been illustrated that, with a suitable choice of parameters, the solutions can produce the two-horizon, extreme and naked singularity black holes. By calculating the black hole charge, mass, entropy, temperature, and electric potential, it has been proved that they fulfill the standard form of the first law of black hole thermodynamics. The thermodynamic stability of the black holes has been analyzed by utilizing the canonical and grand canonical ensembles and noting the signature of the black hole heat capacity and Gibbs free energy of the black holes. The points of type-1, type-2, and Hawking–Page phase transitions and the ranges at which the black holes are locally or globally stable have been determined. The geometrical thermodynamics of the black holes has been studied by use of different thermodynamic metrics, and the results of different approaches have been compared.


2017 ◽  
Vol 32 (15) ◽  
pp. 1750083 ◽  
Author(s):  
Mariano Cadoni ◽  
Parul Jain

Motivated by the new theoretical paradigm that views space–time geometry as emerging from the entanglement of a pre-geometric theory, we investigate the issue of the signature of the presence of horizons and localized matter on the entanglement entropy (EE) [Formula: see text] for the case of three-dimensional AdS (AdS3) gravity. We use the holographically dual two-dimensional CFT on the torus and the related modular symmetry in order to treat bulk black holes and conical singularities (sourced by pointlike masses not shielded by horizons) on the same footing. In the regime where boundary tori can be approximated by cylinders, we are able to give universal expressions for the EE of black holes and conical singularities. We argue that the presence of horizons/localized matter in the bulk is encoded in the EE in terms of (i) enhancement/reduction of the entanglement of the AdS3 vacuum, (ii) scaling as area/volume of the leading term of the perturbative expansion of [Formula: see text], (iii) exponential/periodic behavior of [Formula: see text] and (iv) presence of unaccessible regions in the noncompact/compact dimension of the boundary cylinder. In particular, we show that the reduction effect of matter on the entanglement of the vacuum found by Verlinde for the de Sitter vacuum extends to the AdS3 vacuum.


Sign in / Sign up

Export Citation Format

Share Document