scholarly journals Holographic BCFTs and communicating black holes

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Hao Geng ◽  
Severin Lüst ◽  
Rashmish K. Mishra ◽  
David Wakeham

Abstract We study the AdS/BCFT duality between two-dimensional conformal field theories with two boundaries and three-dimensional anti-de Sitter space with two Karch-Randall branes. We compute the entanglement entropy of a bipartition of the BCFT, on both the gravity side and the field theory side. At finite temperature this entanglement entropy characterizes the communication between two braneworld black holes, coupled to each other through a common bath. We find a Page curve consistent with unitarity. The gravitational result, computed using double-holographically realized quantum extremal surfaces, matches the conformal field theory calculation.At zero temperature, we obtain an interesting extension of the AdS3/BCFT2 correspondence. For a central charge c, we find a gap $$ \left(\frac{c}{16},\frac{c}{12}\right) $$ c 16 c 12 in the spectrum of the scaling dimension ∆bcc of the boundary condition changing operator (which interpolates mismatched boundary conditions on the two boundaries of the BCFT). Depending on the value of ∆bcc, the gravitational dual is either a defect global AdS3 geometry or a single sided black hole, and in both cases there are two Karch-Randall branes.

2012 ◽  
Vol 27 (09) ◽  
pp. 1250048 ◽  
Author(s):  
IBRAHIMA BAH ◽  
LEOPOLDO A. PANDO ZAYAS ◽  
CÉSAR A. TERRERO-ESCALANTE

Using a holographic proposal for the geometric entropy we study its behavior in the geometry of Schwarzschild black holes in global AdSp for p = 3, 4, 5. Holographically, the entropy is determined by a minimal surface. On the gravity side, due to the presence of a horizon on the background, generically there are two solutions to the surfaces determining the entanglement entropy. In the case of AdS3, the calculation reproduces precisely the geometric entropy of an interval of length l in a two-dimensional conformal field theory with periodic boundary conditions. We demonstrate that in the cases of AdS4 and AdS5 the sign of the difference of the geometric entropies changes, signaling a transition. Euclideanization implies that various embedding of the holographic surface are possible. We study some of them and find that the transitions are ubiquitous. In particular, our analysis renders a very intricate phase space, showing, for some ranges of the temperature, up to three branches. We observe a remarkable universality in the type of results we obtain from AdS4 and AdS5.


2016 ◽  
Vol 31 (12) ◽  
pp. 1650073
Author(s):  
Davood Momeni ◽  
Muhammad Raza ◽  
Ratbay Myrzakulov

A metric is proposed to explore the noncommutative form of the anti-de Sitter (AdS) space due to quantum effects. It has been proved that the noncommutativity in AdS space induces a single component gravitoelectric field. The holographic Ryu–Takayanagi (RT) algorithm is then applied to compute the entanglement entropy (EE) in dual CFT2. This calculation can be exploited to compute ultraviolet–infrared (UV–IR) cutoff dependent central charge of the certain noncommutative CFT2. This noncommutative computation of the EE can be interpreted in the form of the surface/state correspondence. We have shown that noncommutativity increases the dimension of the effective Hilbert space of the dual conformal field theory (CFT).


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Konstantin Weisenberger ◽  
Suting Zhao ◽  
Christian Northe ◽  
René Meyer

Abstract We test the proposal of [1] for the holographic computation of the charged moments and the resulting symmetry-resolved entanglement entropy in different excited states, as well as for two entangling intervals. Our holographic computations are performed in U(1) Chern-Simons-Einstein-Hilbert gravity, and are confirmed by independent results in a conformal field theory at large central charge. In particular, we consider two classes of excited states, corresponding to charged and uncharged conical defects in AdS3. In the conformal field theory, these states are generated by the insertion of charged and uncharged heavy operators. We employ the monodromy method to calculate the ensuing four-point function between the heavy operators and the twist fields. For the two-interval case, we derive our results on the AdS and the conformal field theory side, respectively, from the generating function method of [1], as well as the vertex operator algebra. In all cases considered, we find equipartition of entanglement between the different charge sectors. We also clarify an aspect of conformal field theories with a large central charge and $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody symmetry used in our calculations, namely the factorization of the Hilbert space into a gravitational Virasoro sector with large central charge, and a $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody sector.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Zohar Komargodski ◽  
Márk Mezei ◽  
Sridip Pal ◽  
Avia Raviv-Moshe

Abstract Conformal Field Theories (CFTs) have rich dynamics in heavy states. We describe the constraints due to spontaneously broken boost and dilatation symmetries in such states. The spontaneously broken boost symmetries require the existence of new low-lying primaries whose scaling dimension gap, we argue, scales as O(1). We demonstrate these ideas in various states, including fluid, superfluid, mean field theory, and Fermi surface states. We end with some remarks about the large charge limit in 2d and discuss a theory of a single compact boson with an arbitrary conformal anomaly.


1999 ◽  
Vol 14 (28) ◽  
pp. 1961-1981 ◽  
Author(s):  
SHUHEI MANO

A conformal field theory on the boundary of three-dimensional asymptotic anti-de Sitter spaces which appear as near horizon geometry of D-brane bound states is discussed. It is shown that partition functions of gravitational instantons appear as high and low temperature limits of the partition function of the conformal field theory. The result reproduces phase transition between the anti-de Sitter space and the BTZ black hole in the bulk gravity.


2014 ◽  
Vol 92 (11) ◽  
pp. 1481-1484 ◽  
Author(s):  
J. Naji ◽  
S. Heydari ◽  
A. Amjadi

In this paper, we consider a charged black hole in three dimensions with a scalar charge and discuss energy loss of a heavy particle moving near the black hole horizon. This analysis is useful when anti-de Sitter space – conformal field theory correspondence is applied. We find that an electric charge of a black hole increases the drag force but a scalar charge decreases it.


1993 ◽  
Vol 08 (16) ◽  
pp. 2839-2858 ◽  
Author(s):  
M. CASELLE ◽  
F. GLIOZZI ◽  
S. VINTI ◽  
R. FIORE

We report on a high precision Monte Carlo test of the three-dimensional Ising gauge model at finite temperature. The string tension σ is extracted from the expectation values of correlations of Polyakov lines. Agreement with the string tension extracted from Wilson loops is found only if the quantum fluctuations of the flux tube are properly taken into account. The central charge of the underlying conformal field theory is c = 1.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Akram Sadat Sefiedgar

The emergence of the quantum gravitational effects in a very high energy regime necessitates some corrections to the thermodynamics of black holes. In this letter, we investigate a possible modification to the thermodynamics of Schwarzschild anti-de Sitter (SAdS) black holes due to rainbow gravity model. Using the correspondence between a (d+1)-dimensional SAdS black hole and a conformal filed theory ind-dimensional spacetime, one may find the corrections to the Cardy-Verlinde formula from the modified thermodynamics of the black hole. Furthermore, we show that the corrected Cardy-Verlinde formula can also be derived by redefining the Virasoro operator and the central charge.


2007 ◽  
Vol 98 (18) ◽  
Author(s):  
Hong Liu ◽  
Krishna Rajagopal ◽  
Urs Achim Wiedemann

Sign in / Sign up

Export Citation Format

Share Document