scholarly journals R-parity violation axiogenesis

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Raymond T. Co ◽  
Keisuke Harigaya ◽  
Zachary Johnson ◽  
Aaron Pierce

Abstract We show that the rotation of the QCD axion field, aided by B−L violation from supersymmetric R-parity violating couplings, can yield the observed baryon abundance. Strong sphaleron processes transfer the angular momentum of the axion field into a quark chiral asymmetry, which R-parity violating couplings convert to the baryon asymmetry of the Universe. We focus on the case of dimensionless R-parity violating couplings with textures motivated by grand unified theories and comment on more general scenarios. The axion decay constant and mass spectrum of supersymmetric particles are constrained by Big Bang nucleosynthesis, proton decay from the R-parity violation, and successful thermalization of the Peccei-Quinn symmetry breaking field. Axion dark matter may be produced by the axion rotation via the kinetic misalignment mechanism for axion decay constants below 1010 GeV, or by the conventional misalignment mechanism for 1011-12 GeV. The viable parameter region can be probed by proton decay and axion searches. This scenario may also have connections with collider experiments, including searches for long-lived particles, and observations of gravitational waves.

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Junwu Huang ◽  
Amalia Madden ◽  
Davide Racco ◽  
Mario Reig

Abstract The QCD axion is one of the best motivated dark matter candidates. The misalignment mechanism is well known to produce an abundance of the QCD axion consistent with dark matter for an axion decay constant of order 1012 GeV. For a smaller decay constant, the QCD axion, with Peccei-Quinn symmetry broken during inflation, makes up only a fraction of dark matter unless the axion field starts oscillating very close to the top of its potential, in a scenario called “large-misalignment”. In this scenario, QCD axion dark matter with a small axion decay constant is partially comprised of very dense structures. We present a simple dynamical model realising the large-misalignment mechanism. During inflation, the axion classically rolls down its potential approaching its minimum. After inflation, the Universe reheats to a high temperature and a modulus (real scalar field) changes the sign of its minimum dynamically, which changes the sign of the mass of a vector-like fermion charged under QCD. As a result, the minimum of the axion potential during inflation becomes the maximum of the potential after the Universe has cooled through the QCD phase transition and the axion starts oscillating. In this model, we can produce QCD axion dark matter with a decay constant as low as 6 × 109 GeV and an axion mass up to 1 meV. We also summarise the phenomenological implications of this mechanism for dark matter experiments and colliders.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Ryuichiro Kitano ◽  
Wen Yin

Abstract The axion mass receives a large correction from small instantons if the QCD gets strongly coupled at high energies. We discuss the size of the new CP violating phases caused by the fact that the small instantons are sensitive to the UV physics. We also discuss the effects of the mass correction on the axion abundance of the Universe. Taking the small-instanton contributions into account, we propose a natural scenario of axion dark matter where the axion decay constant is as large as 1015-16 GeV. The scenario works in the high-scale inflation models.


2009 ◽  
Vol 5 (H15) ◽  
pp. 304-304
Author(s):  
J. C. Berengut ◽  
V. A. Dzuba ◽  
V. V. Flambaum ◽  
J. A. King ◽  
M. G. Kozlov ◽  
...  

Current theories that seek to unify gravity with the other fundamental interactions suggest that spatial and temporal variation of fundamental constants is a possibility, or even a necessity, in an expanding Universe. Several studies have tried to probe the values of constants at earlier stages in the evolution of the Universe, using tools such as big-bang nucleosynthesis, the Oklo natural nuclear reactor, quasar absorption spectra, and atomic clocks (see, e.g. Flambaum & Berengut (2009)).


2015 ◽  
Vol 93 (12) ◽  
pp. 1561-1565
Author(s):  
Ng. K. Francis

We construct the neutrino mass models with non-vanishing θ13 and estimate the baryon asymmetry of the universe and subsequently derive the constraints on the inflaton mass and the reheating temperature after inflation. The great discovery of this decade, the detection of Higgs boson of mass 126 GeV and nonzero θ13, makes leptogenesis all the more exciting. Besides, the neutrino mass model is compatible with inflaton mass 1010–1013 GeV corresponding to reheating temperature TR ∼ 105–107 GeV to overcome the gravitino constraint in supersymmetry and big bang nucleosynthesis. When Daya Bay data θ13 ≈ 9° is included in the model, τ predominates over e and μ contributions, which are indeed a good sign. It is shown that neutrino mass models for a successful leptogenesis can be accommodated for a variety of inflationary models with a rather wide ranging inflationary scale.


2018 ◽  
Vol 782 ◽  
pp. 181-184 ◽  
Author(s):  
Masahiro Kawasaki ◽  
Eisuke Sonomoto ◽  
Tsutomu T. Yanagida

2009 ◽  
Vol 24 (18n19) ◽  
pp. 3342-3353 ◽  
Author(s):  
V. V. FLAMBAUM ◽  
J. C. BERENGUT

We review recent works discussing the effects of variation of fundamental "constants" on a variety of physical systems. These are motivated by theories unifying gravity with other interactions that suggest the possibility of temporal and spatial variation of the fundamental constants in an expanding Universe. The effects of any potential variation of the fine-structure constant and fundamental masses could be seen in phenomena covering the lifespan of the Universe, from Big Bang nucleosynthesis to quasar absorption spectra to modern atomic clocks. We review recent attempts to find such variations and discuss some of the most promising new systems where huge enhancements of the effects may occur.


2019 ◽  
Vol 28 (08) ◽  
pp. 1950065 ◽  
Author(s):  
Tahani R. Makki ◽  
Mounib F. El Eid ◽  
Grant J. Mathews

The light elements and their isotopes were produced during standard big bang nucleosynthesis (SBBN) during the first minutes after the creation of the universe. Comparing the calculated abundances of these light species with observed abundances, it appears that all species match very well except for lithium (7Li) which is overproduced by the SBBN. This discrepancy is rather challenging for several reasons to be considered on astrophysical and on nuclear physics ground, or by invoking nonstandard assumptions which are the focus of this paper. In particular, we consider a variation of the chemical potentials of the neutrinos and their temperature. In addition, we investigated the effect of dark matter on 7Li production. We argue that including nonstandard assumptions can lead to a significant reduction of the 7Li abundance compared to that of SBBN. This aspect of lithium production in the early universe may help to resolve the outstanding cosmological lithium problem.


2018 ◽  
Vol 33 (29) ◽  
pp. 1850181 ◽  
Author(s):  
Saleh Hamdan ◽  
James Unwin

We highlight the general scenario of dark matter freeze-out while the energy density of the universe is dominated by a decoupled non-relativistic species. Decoupling during matter domination changes the freeze-out dynamics, since the Hubble rate is parametrically different for matter and radiation domination. Furthermore, for successful Big Bang Nucleosynthesis the state dominating the early universe energy density must decay, this dilutes (or repopulates) the dark matter. As a result, the masses and couplings required to reproduce the observed dark matter relic density can differ significantly from radiation-dominated freeze-out.


Sign in / Sign up

Export Citation Format

Share Document