scholarly journals An equal area law for holographic entanglement entropy of the AdS-RN black hole

2015 ◽  
Vol 2015 (12) ◽  
pp. 1-17 ◽  
Author(s):  
Phuc H. Nguyen
2017 ◽  
Vol 2017 (11) ◽  
Author(s):  
Fiona McCarthy ◽  
David Kubizňák ◽  
Robert B. Mann

Author(s):  
Shan-Quan Lan ◽  
Jie-Xiong Mo ◽  
Wen-Biao Liu

2014 ◽  
Vol 24 (01) ◽  
pp. 1550001 ◽  
Author(s):  
Dharm Veer Singh

We study the quantum scalar field in the background of BTZ black hole and evaluate the entanglement entropy of the nonvacuum states. The entropy is proportional to the area of event horizon for the ground state, but the area law is violated in the case of nonvacuum states (first excited state and mixed states) and the corrections scale as power law.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Euro Spallucci ◽  
Anais Smailagic

We study the phases of a Schwarzschild black hole in the Anti-deSitter background geometry. Exploiting fluid/gravity duality, we construct the Maxwell equal area isotherm   in the temperature-entropy plane, in order to eliminate negative heat capacity BHs. The construction we present here is reminiscent of the isobar cut in the pressure-volume plane which eliminates unphysical part of the Van der Walls curves below the critical temperature. Our construction also modifies the Hawking-Page phase transition. Stable BHs are formed at the temperature , while pure radiation persists for . turns out to be below the standard Hawking-Page temperature and there are no unstable BHs as in the usual scenario. Also, we show that, in order to reproduce the correct BH entropy , one has to write a black hole equation of state, that is, , in terms of the geometrical volume .


2020 ◽  
Vol 80 (9) ◽  
Author(s):  
Roldão da Rocha ◽  
Anderson A. Tomaz

AbstractThe holographic entanglement entropy (HEE) is investigated for a black hole under the minimal geometric deformation (MGD) procedure, created by gravitational decoupling via an anisotropic fluid, in an AdS/CFT on the brane setup. The respective HEE corrections are computed and confronted to the corresponding corrections for both the standard MGD black holes and the Schwarzschild ones.


2016 ◽  
Vol 31 (12) ◽  
pp. 1650067 ◽  
Author(s):  
Seyed Ali Hosseini Mansoori ◽  
Behrouz Mirza ◽  
Mahdi Davoudi Darareh ◽  
Shahrooz Janbaz

In this paper, we investigate the entanglement entropy for the generalized charged BTZ black hole through the AdS3/CFT2 correspondence. Using the holographic description of the entanglement entropy for the strip-subsystem in boundary CFT2, we will find the first law-like relation between the variation of holographic entanglement entropy and the variation of energy of the subsystem in terms of the mass and the electric charge up to the second-order. We also obtain appropriate counterterms to renormalize the energy tensor associated with the bulk on-shell actions.


2015 ◽  
Vol 24 (12) ◽  
pp. 1544014 ◽  
Author(s):  
Aron C. Wall

The Second Law of black hole thermodynamics is shown to hold for arbitrarily complicated theories of higher curvature gravity, so long as we allow only linearized perturbations to stationary black holes. Some ambiguities in Wald’s Noether charge method are resolved. The increasing quantity turns out to be the same as the holographic entanglement entropy calculated by Dong. It is suggested that only the linearization of the higher curvature Second Law is important, when consistently truncating a UV-complete quantum gravity theory.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Minwoo Suh

Abstract Employing uplift formulae, we uplift supersymmetric AdS6 black holes from F(4) gauged supergravity to massive type IIA and type IIB supergravity. In massive type IIA supergravity, we obtain supersymmetric AdS6 black holes asymptotic to the Brandhuber-Oz solution. In type IIB supergravity, we obtain supersymmetric AdS6 black holes asymptotic to the non-Abelian T-dual of the Brandhuber-Oz solution. For the uplifted black hole solutions, we calculate the holographic entanglement entropy. In massive type IIA supergravity, it precisely matches the Bekenstein-Hawking entropy of the black hole solutions.


2009 ◽  
Vol 24 (14) ◽  
pp. 2703-2728 ◽  
Author(s):  
IBRAHIMA BAH ◽  
ALBERTO FARAGGI ◽  
LEOPOLDO A. PANDO ZAYAS ◽  
CÉSAR A. TERRERO-ESCALANTE

Using a holographic proposal for the entanglement entropy we study its behavior in various supergravity backgrounds. We are particularly interested in the possibility of using the entanglement entropy as way to detect transitions induced by the presence horizons. We consider several geometries with horizons: the black hole in AdS3, nonextremal D p-branes, dyonic black holes asymptotically to AdS4 and also Schwarzschild black holes in global AdS p coordinates. Generically, we find that the entanglement entropy does not exhibit a transition, that is, one of the two possible configurations always dominates.


Sign in / Sign up

Export Citation Format

Share Document