scholarly journals Conformal field theory complexity from Euler-Arnold equations

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Mario Flory ◽  
Michal P. Heller

Abstract Defining complexity in quantum field theory is a difficult task, and the main challenge concerns going beyond free models and associated Gaussian states and operations. One take on this issue is to consider conformal field theories in 1+1 dimensions and our work is a comprehensive study of state and operator complexity in the universal sector of their energy-momentum tensor. The unifying conceptual ideas are Euler-Arnold equations and their integro-differential generalization, which guarantee well-posedness of the optimization problem between two generic states or transformations of interest. The present work provides an in-depth discussion of the results reported in arXiv:2005.02415 and techniques used in their derivation. Among the most important topics we cover are usage of differential regularization, solution of the integro-differential equation describing Fubini-Study state complexity and probing the underlying geometry.

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Yi Li ◽  
Yang Zhou

Abstract In this article we probe the proposed holographic duality between $$ T\overline{T} $$ T T ¯ deformed two dimensional conformal field theory and the gravity theory of AdS3 with a Dirichlet cutoff by computing correlators of energy-momentum tensor. We focus on the large central charge sector of the $$ T\overline{T} $$ T T ¯ CFT in a Euclidean plane and a sphere, and compute the correlators of energy-momentum tensor using an operator identity promoted from the classical trace relation. The result agrees with a computation of classical pure gravity in Euclidean AdS3 with the corresponding cutoff surface, given a holographic dictionary which identifies gravity parameters with $$ T\overline{T} $$ T T ¯ CFT parameters.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Gong Cheng ◽  
Brian Swingle

Abstract In this article we discuss the impact of conservation laws, specifically U(1) charge conservation and energy conservation, on scrambling dynamics, especially on the approach to the late time fully scrambled state. As a model, we consider a d + 1 dimensional (d ≥ 2) holographic conformal field theory with Einstein gravity dual. Using the holographic dictionary, we calculate out-of-time-order-correlators (OTOCs) that involve the conserved U(1) current operator or energy-momentum tensor. We show that these OTOCs approach their late time value as a power law in time, with a universal exponent $$ \frac{d}{2} $$ d 2 . We also generalize the result to compute OTOCs between general operators which have overlap with the conserved charges.


2021 ◽  
Vol 81 (2) ◽  
Author(s):  
Claudio Corianò ◽  
Luigi Delle Rose ◽  
Kostas Skenderis

AbstractTheories with generalised conformal structure contain a dimensionful parameter, which appears as an overall multiplicative factor in the action. Examples of such theories are gauge theories coupled to massless scalars and fermions with Yukawa interactions and quartic couplings for the scalars in spacetime dimensions other than 4. Many properties of such theories are similar to that of conformal field theories (CFT), and in particular their 2-point functions take the same form as in CFT but with the normalisation constant now replaced by a function of the effective dimensionless coupling g constructed from the dimensionful parameter and the distance separating the two operators. Such theories appear in holographic dualities involving non-conformal branes and this behaviour of the correlators has already been observed at strong coupling. Here we present a perturbative computation of the two-point function of the energy-momentum tensor to two loops in dimensions $$d= 3, 5$$ d = 3 , 5 , confirming the expected structure and determining the corresponding functions of g to this order, including the effects of renormalisation. We also discuss the $$\hbox {d}=4$$ d = 4 case for comparison. The results for $$d=3$$ d = 3 are relevant for holographic cosmology, and in this case we also study the effect of a $$\Phi ^6$$ Φ 6 coupling, which while marginal in the usual sense it is irrelevant from the perspective of the generalised conformal structure. Indeed, the effect of such coupling in the 2-point function is washed out in the IR but it modifies the UV.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Christopher P. Herzog ◽  
Abhay Shrestha

Abstract This paper is designed to be a practical tool for constructing and investigating two-point correlation functions in defect conformal field theory, directly in physical space, between any two bulk primaries or between a bulk primary and a defect primary, with arbitrary spin. Although geometrically elegant and ultimately a more powerful approach, the embedding space formalism gets rather cumbersome when dealing with mixed symmetry tensors, especially in the projection to physical space. The results in this paper provide an alternative method for studying two-point correlation functions for a generic d-dimensional conformal field theory with a flat p-dimensional defect and d − p = q co-dimensions. We tabulate some examples of correlation functions involving a conserved current, an energy momentum tensor and a Maxwell field strength, while analysing the constraints arising from conservation and the equations of motion. A method for obtaining bulk-to-defect correlators is also explained. Some explicit examples are considered: free scalar theory on ℝp× (ℝq/ℤ2) and a free four dimensional Maxwell theory on a wedge.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Zohar Komargodski ◽  
Márk Mezei ◽  
Sridip Pal ◽  
Avia Raviv-Moshe

Abstract Conformal Field Theories (CFTs) have rich dynamics in heavy states. We describe the constraints due to spontaneously broken boost and dilatation symmetries in such states. The spontaneously broken boost symmetries require the existence of new low-lying primaries whose scaling dimension gap, we argue, scales as O(1). We demonstrate these ideas in various states, including fluid, superfluid, mean field theory, and Fermi surface states. We end with some remarks about the large charge limit in 2d and discuss a theory of a single compact boson with an arbitrary conformal anomaly.


2009 ◽  
Vol 24 (32) ◽  
pp. 6197-6222 ◽  
Author(s):  
YU NAKAYAMA

We study scale invariant but not necessarily conformal invariant deformations of nonrelativistic conformal field theories from the dual gravity viewpoint. We present the corresponding metric that solves the Einstein equation coupled with a massive vector field. We find that, within the class of metric we study, when we assume the Galilean invariance, the scale invariant deformation always preserves the nonrelativistic conformal invariance. We discuss applications to scaling regime of Reggeon field theory and nonlinear quantum finance. These theories possess scale invariance but may or may not break the conformal invariance, depending on the underlying symmetry assumptions.


2003 ◽  
Vol 18 (25) ◽  
pp. 4497-4591 ◽  
Author(s):  
MICHAEL A. I. FLOHR

These are notes of my lectures held at the first School & Workshop on Logarithmic Conformal Field Theory and its Applications, September 2001 in Tehran, Iran. These notes cover only selected parts of the by now quite extensive knowledge on logarithmic conformal field theories. In particular, I discuss the proper generalization of null vectors towards the logarithmic case, and how these can be used to compute correlation functions. My other main topic is modular invariance, where I discuss the problem of the generalization of characters in the case of indecomposable representations, a proposal for a Verlinde formula for fusion rules and identities relating the partition functions of logarithmic conformal field theories to such of well known ordinary conformal field theories. The two main topics are complemented by some remarks on ghost systems, the Haldane-Rezayi fractional quantum Hall state, and the relation of these two to the logarithmic c=-2 theory.


Sign in / Sign up

Export Citation Format

Share Document