A nonphotochemical-quenching-deficient mutant of Arabidopsis thaliana possessing normal pigment composition and xanthophyll-cycle activity

Planta ◽  
2000 ◽  
Vol 210 (2) ◽  
pp. 205-214 ◽  
Author(s):  
Richard B. Peterson ◽  
Evelyn A. Havir
2017 ◽  
Vol 114 (33) ◽  
pp. E7009-E7017 ◽  
Author(s):  
Michelle Leuenberger ◽  
Jonathan M. Morris ◽  
Arnold M. Chan ◽  
Lauriebeth Leonelli ◽  
Krishna K. Niyogi ◽  
...  

Photosynthetic organisms use various photoprotective mechanisms to dissipate excess photoexcitation as heat in a process called nonphotochemical quenching (NPQ). Regulation of NPQ allows for a rapid response to changes in light intensity and in vascular plants, is primarily triggered by a pH gradient across the thylakoid membrane (∆pH). The response is mediated by the PsbS protein and various xanthophylls. Time-correlated single-photon counting (TCSPC) measurements were performed on Arabidopsis thaliana to quantify the dependence of the response of NPQ to changes in light intensity on the presence and accumulation of zeaxanthin and lutein. Measurements were performed on WT and mutant plants deficient in one or both of the xanthophylls as well as a transgenic line that accumulates lutein via an engineered lutein epoxide cycle. Changes in the response of NPQ to light acclimation in WT and mutant plants were observed between two successive light acclimation cycles, suggesting that the character of the rapid and reversible response of NPQ in fully dark-acclimated plants is substantially different from in conditions plants are likely to experience caused by changes in light intensity during daylight. Mathematical models of the response of zeaxanthin- and lutein-dependent reversible NPQ were constructed that accurately describe the observed differences between the light acclimation periods. Finally, the WT response of NPQ was reconstructed from isolated components present in mutant plants with a single common scaling factor, which enabled deconvolution of the relative contributions of zeaxanthin- and lutein-dependent NPQ.


1996 ◽  
Vol 23 (6) ◽  
pp. 669 ◽  
Author(s):  
WW Iii Adams ◽  
B Demmig-Adams ◽  
DH Barker ◽  
S Kiley

Acclimation of the leaves or stems of four succulent species to different light environments and to the light gradient across high light-acclimated tissues was examined through measurements of chlorophyll fluorescence and characterisation of the pigment composition of the thylakoid membranes. Whereas the total amounts of light striking the upper (sun-exposed) and lower (self-shaded) surfaces were quite different, resulting in a much smaller pool of the xanthophyll cycle carotenoids in the lower halves of high light-acclimated tissues, the conversion state of the xanthophyll cycle (the degree to which violaxanthin is converted to antheraxanthin and zeaxanthin) was similar throughout the tissues during exposure to natural sunlight. Under full sunlight, less than 25% of the light absorbed by the upper surface was utilised through photosynthesis, with the majority of the remaining excitation energy being dissipated thermally. In contrast, a considerably greater fraction of the light absorbed by the lower surface was utilised in photosynthesis, ranging from one-third to more than two-thirds of the total energy absorbed.


2002 ◽  
Vol 29 (4) ◽  
pp. 425 ◽  
Author(s):  
Govindjee ◽  
Paul Spilotro

A major photoprotective mechanism that plants employ against excess light involves interplay between the xanthophyll cycle and the accumulation of protons. Using mutants in the xanthophyll cycle, the roles of violaxanthin, antheraxanthin and zeaxanthin have already been well established. In this paper, we present data on intact leaves of a mutant [coupling factor quick recovery mutant (cfq); atpC1:E244K] of Arabidopsis thaliana that we expected, based on 515-nm absorbance changes (Gabrys et al. 1994, Plant Physiology 104, 769–776), to have differences in light-induced ΔpH. The significance of this paper is: (i) it is the first study of the photoprotective energy dissipation involving a mutant of the pH gradient; it establishes that protons play an important role in the pattern of non-photochemical quenching (NPQ) of chlorophyll (Chl) a fluorescence; and (ii) differences between the cfq and the wild type (wt) are observed only under subsaturating light intensities, and are strongest in the initial few minutes of the induction period. Our results on light-intensity dependent Chl* a fluorescence transients (the Kautsky effect), and on NPQ of Chl a fluorescence, at 50–250 μmol photons m–2 s–1 demonstrate: (i) the ‘P-to-S’ (or ‘T’) decay, known to be related to [H+] (Briantais et al. 1979, Biochimica et Biophysica Acta 548, 128–138), is slowed in the mutant; and (ii) the pattern of NPQ kinetics is different in the initial 100 s — in the wt leaves, there is a marked rise and decline, and in the cfq mutant, there is a slowed rise. These differences are absent at 750 μmol photons m–2 s–1. Pre-illumination and nigericin (an uncoupler that dissipates the proton gradient) treatment of the cfq mutant, which has lower ΔpH relative to wild type, confirm the conclusion that protons play an important role in the quenching of Chl a fluorescence.


1986 ◽  
Vol 66 (4) ◽  
pp. 589-594 ◽  
Author(s):  
Waldemar Eichenberger ◽  
Arminio Boschetti ◽  
Hans Peter Michel

2020 ◽  
Author(s):  
Devin Noordermeer ◽  
Vera Velasco ◽  
Ingo Ensminger

<p>In the next several decades, warming in the northern hemisphere will result in asynchronous phasing between the temperature and photoperiod signals that evergreen conifers rely upon for cold hardening during autumn. Our study investigated intraspecific variation in photosynthetic and photoprotective mechanisms in Douglas-fir (Pseudotsuga menziesii) originating from contrasting climates during simulated summer and autumn conditions, as well as how autumn warming affects downregulation of photosynthesis and development of cold hardening. Following growth under long days and summer temperature (LD/ST; 16 h photoperiod; 22 °C/13 °C day/night), Douglas-fir seedlings from two interior and two coastal provenances were acclimated to simulated autumn conditions with short days and either low temperature (SD/LT; 8 h photoperiod; 4 °C/-4 °C day/night) or high temperature (SD/HT; 8 h photoperiod; 19 °C/11 °C day/night). Exposure to low temperature induced increase in size and de-epoxidation of the xanthophyll cycle pigment pool, development of sustained nonphotochemical quenching, and downregulation of photosynthetic activity. SD/HT seedlings exhibited no downregulation of photosynthesis, corresponding with no change in xanthophyll cycle pigment de-epoxidation and no development of sustained nonphotochemical quenching. However, freezing tolerance development for all provenances was not impaired under SD/HT relative to SD/LT. Interior Douglas-fir provenances developed greater freezing tolerance relative to coastal provenances under both temperature treatments. Our findings suggest that short photoperiod alone is insufficient to induce downregulation of photosynthesis in autumn for Douglas-fir. However, this prolonged period of photosynthetic activity does not appear to bear a trade-off of impaired freezing tolerance.</p>


Planta ◽  
2005 ◽  
Vol 223 (3) ◽  
pp. 532-541 ◽  
Author(s):  
Ljudmila Kalituho ◽  
Thomas Graßes ◽  
Maria Graf ◽  
Jennifer Rech ◽  
Peter Jahns

Sign in / Sign up

Export Citation Format

Share Document