psbs protein
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 2)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Vol 7 (9) ◽  
pp. 59-68
Author(s):  
Pashayeva

Plants acclimate to fluctuations in light conditions by adjusting their photosynthetic apparatus. When the light intensity exceeds, an unbalanced excitation of the two photosystems occurs. It results in reduced photosynthetic efficiency. Photosystem II (PSII) is the most susceptible and dynamically regulated part of the light reactions in the thylakoid membrane. Non-photochemical quenching of chlorophyll fluorescence (NPQ) is one of the short-term photoprotective mechanisms, which consist of the number of components. The strongest NPQ component — qE is localized in the PSII antenna and induced in plants by lumen acidification, the activation of the pH sensor PsbS, and the conversion of the violaxanthin to zeaxanthin within the xanthophyll cycle. Here, I present data that characterizes the role of the PsbS protein in organization of PSII structural components in isolated PSII-enriched membranes. The preparations were isolated from wild-type (WT) and PsbS-less (PsbS-KO) mutant rice plant. Based on the obtained results, the PSII-enriched membranes from WT and PsbS-KO differ as in the level of lipids, also in carotenoids. I conclude that the PsbS-dependent changes in membrane fluidity in PsbS-KO mutant plants compensated with increased lipid level in mutant plants.


2019 ◽  
Vol 70 (20) ◽  
pp. 5527-5535 ◽  
Author(s):  
Alberta Pinnola

This review on the evolution of quenching mechanisms for excess energy dissipation focuses on the role of Light-Harvesting Complex Stress-Related (LHCSR) proteins versus Photosystem II Subunit S (PSBS) protein, and the reasons for the redundancy of LHCSR in vascular plants as PSBS became established.


2017 ◽  
Vol 114 (33) ◽  
pp. E7009-E7017 ◽  
Author(s):  
Michelle Leuenberger ◽  
Jonathan M. Morris ◽  
Arnold M. Chan ◽  
Lauriebeth Leonelli ◽  
Krishna K. Niyogi ◽  
...  

Photosynthetic organisms use various photoprotective mechanisms to dissipate excess photoexcitation as heat in a process called nonphotochemical quenching (NPQ). Regulation of NPQ allows for a rapid response to changes in light intensity and in vascular plants, is primarily triggered by a pH gradient across the thylakoid membrane (∆pH). The response is mediated by the PsbS protein and various xanthophylls. Time-correlated single-photon counting (TCSPC) measurements were performed on Arabidopsis thaliana to quantify the dependence of the response of NPQ to changes in light intensity on the presence and accumulation of zeaxanthin and lutein. Measurements were performed on WT and mutant plants deficient in one or both of the xanthophylls as well as a transgenic line that accumulates lutein via an engineered lutein epoxide cycle. Changes in the response of NPQ to light acclimation in WT and mutant plants were observed between two successive light acclimation cycles, suggesting that the character of the rapid and reversible response of NPQ in fully dark-acclimated plants is substantially different from in conditions plants are likely to experience caused by changes in light intensity during daylight. Mathematical models of the response of zeaxanthin- and lutein-dependent reversible NPQ were constructed that accurately describe the observed differences between the light acclimation periods. Finally, the WT response of NPQ was reconstructed from isolated components present in mutant plants with a single common scaling factor, which enabled deconvolution of the relative contributions of zeaxanthin- and lutein-dependent NPQ.


2016 ◽  
Vol 291 (33) ◽  
pp. 17478-17487 ◽  
Author(s):  
Viviana Correa-Galvis ◽  
Petra Redekop ◽  
Katharine Guan ◽  
Annika Griess ◽  
Thuy B. Truong ◽  
...  

Non-photochemical quenching of excess excitation energy is an important photoprotective mechanism in photosynthetic organisms. In Arabidopsis thaliana, a high quenching capacity is constitutively present and depends on the PsbS protein. In the green alga Chlamydomonas reinhardtii, non-photochemical quenching becomes activated upon high light acclimation and requires the accumulation of light harvesting complex stress-related (LHCSR) proteins. Expression of the PsbS protein in C. reinhardtii has not been reported yet. Here, we show that PsbS is a light-induced protein in C. reinhardtii, whose accumulation under high light is further controlled by CO2 availability. PsbS accumulated after several hours of high light illumination at low CO2. At high CO2, however, PsbS was only transiently expressed under high light and was degraded after 1 h of high light exposure. PsbS accumulation correlated with an enhanced non-photochemical quenching capacity in high light-acclimated cells grown at low CO2. However, PsbS could not compensate for the function of LHCSR in an LHCSR-deficient mutant. Knockdown of PsbS accumulation led to reduction of both non-photochemical quenching capacity and LHCSR3 accumulation. Our data suggest that PsbS is essential for the activation of non-photochemical quenching in C. reinhardtii, possibly by promoting conformational changes required for activation of LHCSR3-dependent quenching in the antenna of photosystem II.


2016 ◽  
Vol 171 (4) ◽  
pp. 2717-2730 ◽  
Author(s):  
Tania Tibiletti ◽  
Pascaline Auroy ◽  
Gilles Peltier ◽  
Stefano Caffarri

2015 ◽  
Vol 22 (9) ◽  
pp. 729-735 ◽  
Author(s):  
Minrui Fan ◽  
Mei Li ◽  
Zhenfeng Liu ◽  
Peng Cao ◽  
Xiaowei Pan ◽  
...  

2015 ◽  
Vol 172 ◽  
pp. 33-41 ◽  
Author(s):  
Lianqing Dong ◽  
Wenfeng Tu ◽  
Kun Liu ◽  
Ruixue Sun ◽  
Cheng Liu ◽  
...  

2014 ◽  
Vol 66 (5) ◽  
pp. 1259-1270 ◽  
Author(s):  
Maxwell A. Ware ◽  
Erica Belgio ◽  
Alexander V. Ruban

Sign in / Sign up

Export Citation Format

Share Document