scholarly journals Quasi-Cauchy quotients and means

Author(s):  
Janusz Matkowski

AbstractLet $$I\subset {\mathbb {R}}$$ I ⊂ R be an interval that is closed under addition, and $$ k\in {\mathbb {N}}$$ k ∈ N , $$k\ge 2\,$$ k ≥ 2 . For a function $$f:I\rightarrow \left( 0,\infty \right) $$ f : I → 0 , ∞ such that $$F\left( x\right) :=\frac{f\left( kx\right) }{ kf\left( x\right) }$$ F x : = f k x k f x is invertible in I, the k-variable function $$ M_{f}:I^{k}\rightarrow I,$$ M f : I k → I , $$\begin{aligned} M_{f}\left( x_{1},\ldots ,x_{k}\right) :=F^{-1}\left( \frac{f\left( x_{1}+\cdots +x_{k}\right) }{f\left( x_{1}\right) +\cdots +f\left( x_{k}\right) } \right) , \end{aligned}$$ M f x 1 , … , x k : = F - 1 f x 1 + ⋯ + x k f x 1 + ⋯ + f x k , is a premean in I,  and it is referred to as a quasi Cauchy quotient of the additive type of generator f. Three classes of means of this type generated by the exponential, logarithmic, and power functions, are examined. The suitable quasi Cauchy quotients of the exponential types (for continuous additive, logarithmic, and power functions) are considered. When I is closed under multiplication, the quasi Cauchy quotient means of logarithmic and multiplicative type are studied. The equalities of premeans within each of these classes are discussed and some open problems are proposed.

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Claude Carlet

<p style='text-indent:20px;'>We push a little further the study of two recent characterizations of almost perfect nonlinear (APN) functions. We state open problems about them, and we revisit in their perspective a well-known result from Dobbertin on APN exponents. This leads us to a new result about APN power functions and more general APN polynomials with coefficients in a subfield <inline-formula><tex-math id="M1">\begin{document}$ \mathbb{F}_{2^k} $\end{document}</tex-math></inline-formula>, which eases the research of such functions. It also allows to construct automatically many differentially uniform functions from them (this avoids calculations for proving their differential uniformity as done in a recent paper, which are tedious and specific to each APN function). In a second part, we give simple proofs of two important results on Boolean functions, one of which deserves to be better known but needed clarification, while the other needed correction.</p>


1974 ◽  
Vol 54 (4) ◽  
pp. 519-532 ◽  
Author(s):  
L. R. SCHAEFFER ◽  
J. W. WILTON

Sixteen adjustment procedures were used to correct 16,529 Angus and 47,293 Hereford preweaning average daily gain records from the 1971–1972 Canadian Federal–Provincial Record of Performance (ROP) Program. Two criteria were defined to determine the appropriateness of additive- or multiplicative-type adjustments and to determine the best of 16 adjustment procedures. Included in the comparisons were the currently used multiplicative ROP age-of-dam factors. Tests for interactions of time with age-of-dam by sex-of-calf by environment subclasses indicated a preference for additive-type factors. The best adjustment procedure of those compared for removing age-of-dam effects and interactions of age of dam with sex and environment was the additive simultaneous adjustment for age of dam, sex of calf, and feeding system. Both the scientific and practical implications of this study were considered important.


2018 ◽  
Vol 9 (2) ◽  
pp. 67-73
Author(s):  
M Zainul Arifin

This research was conducted to determine the value of the highest compressive strength from the ratio of normal concrete to normal concrete plus additive types of Sika Cim with a composition variation of 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1 , 50% and 1.75% of the weight of cement besides that in this study also aims to find the highest tensile strength from the ratio of normal concrete to normal concrete in the mixture of sika cim composition at the highest compressive strength above and after that added fiber wire with a size diameter of 1 mm in length 100 mm with a ratio of 1% of material weight. The concrete mix plan was calculated using the ASTM method, the matrial composition of the normal concrete mixture as follows, 314 kg / m3 cement, 789 kg / m3 sand, 1125 kg / m3 gravel and 189 liters / m3 of water at 10 cm slump, then normal concrete added variations of the composition of sika cim 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1.5%, 1.75% by weight of cement and fiber, the tests carried out were compressive strength of concrete and tensile strength of concrete, normal maintenance is soaked in fresh water for 28 days at 30oC. From the test results it was found that the normal concrete compressive strength at the age of 28 days was fc1 30 Mpa, the variation in the addition of the sika cim additive type mineral was achieved in composition 0.75% of the cement weight of fc1 40.2 Mpa 30C. Besides that the tensile strength test results were 28 days old with the addition of 1% fiber wire mineral to the weight of the material at a curing temperature of 30oC of 7.5%.


Author(s):  
Elena Makarycheva

The aim of the article is to develop a method for calculating water losses from irrigation channels in determining the permeability of rock in the zone of filtration flow on the basis of the law of infiltration A.N. Kostyakov using the results of studies of free filtration from pits and foundation pits in loess loams. Pressure movement of water in irrigation canals is subject to the laws of two-phase flow, in which – in contrast to the Darcy law for the zone of saturation plays an important role, the volume and its change in time. The filtration rate (VF) increases with increasing rock moisture (θ) along the S-curve, while the pressure gradient (I = dh/dz) decreases. The dependences of these parameters on the pressure are represented by power functions, and their product CDP = VFI does not change in time and can serve as a characteristic of the filtration flow under the channel. When installing paired piezometers near the water chore line in the channel and determining the graph I(t) by the value of the twophase flow constant CDP, it is possible to calculate the filtration rate at a number of times and the water losses during unsteady filtration. Water losses from the channels at equilibrium humidity increases with increasing head according to the formula A.N. Kostyakova, in which the water permeability of rocks is characterized by a steady filtration rate at a head of 1.0 m, and the gradient is the function of pressure. The application of the proposed method of calculating losses in the design of irrigation systems will increase the reliability of the justification of the volume of anti-filtration measures and the forecast of the groundwater level.


Author(s):  
Leiba Rodman

Quaternions are a number system that has become increasingly useful for representing the rotations of objects in three-dimensional space and has important applications in theoretical and applied mathematics, physics, computer science, and engineering. This is the first book to provide a systematic, accessible, and self-contained exposition of quaternion linear algebra. It features previously unpublished research results with complete proofs and many open problems at various levels, as well as more than 200 exercises to facilitate use by students and instructors. Applications presented in the book include numerical ranges, invariant semidefinite subspaces, differential equations with symmetries, and matrix equations. Designed for researchers and students across a variety of disciplines, the book can be read by anyone with a background in linear algebra, rudimentary complex analysis, and some multivariable calculus. Instructors will find it useful as a complementary text for undergraduate linear algebra courses or as a basis for a graduate course in linear algebra. The open problems can serve as research projects for undergraduates, topics for graduate students, or problems to be tackled by professional research mathematicians. The book is also an invaluable reference tool for researchers in fields where techniques based on quaternion analysis are used.


2020 ◽  
Vol 2020 (9) ◽  
pp. 35-46
Author(s):  
Aleksandr Skachkov ◽  
Viktor Vasilevskiy ◽  
Aleksey Yuhnevskiy

The consideration of existing methods for a modal analysis has shown a possibility for the lowest frequency definition of bending vibrations in a coach car body in a vertical plane based on an indirect method reduced to the assessment of the bending stiffness of the one-dimensional model as a Bernoulli-Euler beam with fragment-constant parameters. The assessment mentioned can be obtained by means of the comparison of model deflections (rated) and a prototype (measured experimentally upon a natural body) with the use of the least-squares method that results in the necessity of the solution of the multi-dimensional problem with the reverse coefficient. The introduction of the hypothesis on ratability of real bending stiffness of the prototype and easily calculated geometrical stiffness of a model reduces a multi-dimensional problem incorrect according to Adamar to the simplest search of the extremum of one variable function. The procedure offered for the indirect assessment of bending stiffness was checked through the solution of model problems. The values obtained are offered to use for the assessment of the lowest frequency of bending vibrations with the aid of Ritz and Grammel methods. In case of rigid poles it results in formulae for frequencies into which there are included directly the experimental values of deflections.


2008 ◽  
Vol 4 (3) ◽  
pp. 181-192 ◽  
Author(s):  
Giovanni Sparacino ◽  
Andrea Facchinetti ◽  
Alberto Maran ◽  
Claudio Cobelli

2020 ◽  
Vol 12 ◽  
Author(s):  
Alexandra Atyaksheva ◽  
Yermek Sarsikeyev ◽  
Anastasia Atyaksheva ◽  
Olga Galtseva ◽  
Alexander Rogachev

Aims:: The main goals of this research are exploration of energy-efficient building materials when replacing natural materials with industrial waste and development of the theory and practice of obtaining light and ultra-light gravel materials based on mineral binders and waste dump ash and slag mixtures of hydraulic removal. Background.: Experimental data on the conditions of formation of gravel materials containing hollow aluminum and silica microsphere with opportunity of receipt of optimum structure and properties depending on humidity with the using of various binders are presented in this article. This article dwells on the scientific study of opportunity physical-mechanical properties of composite materials optimization are considered. Objective.: Composite material contains hollow aluminum and silica microsphere. Method.: The study is based on the application of the method of separation of power and heat engineering functions. The method is based on the use of the factor structure optimality, which takes into account the primary and secondary stress fields of the structural gravel material. This indicates the possibility of obtaining gravel material with the most uniform distribution of nano - and microparticles in the gravel material and the formation of stable matrices with minimization of stress concentrations. Experiments show that the thickness of the cement shell, which performs power functions, is directly related to the size of the raw granules. At the same time, the thickness of the cement crust, regardless of the type of binder, with increasing moisture content has a higher rate of formation for granules of larger diameter. Results.: The conditions for the formation of gravel composite materials containing a hollow aluminosilicate microsphere are studied. The optimal structure and properties of the gravel composite material were obtained. The dependence of the strength function on humidity and the type of binder has been investigated. The optimal size and shape of binary form of gravel material containing a hollow aluminosilicate microsphere with a minimum thickness of a cement shell and a maximum strength function was obtained. Conclusion.: Received structure allows to separate power and heat engineering functions in material and to minimize the content of the excited environment centers.


Impact ◽  
2019 ◽  
Vol 2019 (10) ◽  
pp. 30-32
Author(s):  
Tomoyuki Morimae

In cloud quantum computing, a classical client delegate quantum computing to a remote quantum server. An important property of cloud quantum computing is the verifiability: the client can check the integrity of the server. Whether such a classical verification of quantum computing is possible or not is one of the most important open problems in quantum computing. We tackle this problem from the view point of quantum interactive proof systems. Dr Tomoyuki Morimae is part of the Quantum Information Group at the Yukawa Institute for Theoretical Physics at Kyoto University, Japan. He leads a team which is concerned with two main research subjects: quantum supremacy and the verification of quantum computing.


Sign in / Sign up

Export Citation Format

Share Document