In vitro effects of Helicobacter pylori-induced infection in gastric epithelial AGS cells on microglia-mediated toxicity in neuroblastoma SH-SY5Y cells

2009 ◽  
Vol 58 (6) ◽  
pp. 329-335 ◽  
Author(s):  
Yi-Ching Lo ◽  
Yu-Tzu Shih ◽  
Deng-Chyang Wu ◽  
Yi-Chern Lee
2005 ◽  
Vol 12 (12) ◽  
pp. 1378-1386 ◽  
Author(s):  
Dionyssios N. Sgouras ◽  
Effrosini G. Panayotopoulou ◽  
Beatriz Martinez-Gonzalez ◽  
Kalliopi Petraki ◽  
Spyros Michopoulos ◽  
...  

ABSTRACT In clinical settings, Lactobacillus johnsonii La1 administration has been reported to have a favorable effect on Helicobacter pylori-associated gastritis, although the mechanism remains unclear. We administered, continuously through the water supply, live La1 to H. pylori-infected C57BL/6 mice and followed colonization, the development of H. pylori-associated gastritis in the lamina propria, and the levels of proinflammatory chemokines macrophage inflammatory protein 2 (MIP-2) and keratinocyte-derived cytokine (KC) in the serum and gastric tissue over a period of 3 months. We documented a significant attenuation in both lymphocytic (P = 0.038) and neutrophilic (P = 0.003) inflammatory infiltration in the lamina propria as well as in the circulating levels of anti-H. pylori immunoglobulin G antibodies (P = 0.003), although we did not observe a suppressive effect of La1 on H. pylori colonizing numbers. Other lactobacilli, such as L. amylovorus DCE 471 and L. acidophilus IBB 801, did not attenuate H. pylori-associated gastritis to the same extent. MIP-2 serum levels were distinctly reduced during the early stages of H. pylori infection in the La1-treated animals, as were gastric mucosal levels of MIP-2 and KC. Finally, we also observed a significant reduction (P = 0.046) in H. pylori-induced interleukin-8 secretion by human adenocarcinoma AGS cells in vitro in the presence of neutralized (pH 6.8) La1 spent culture supernatants, without concomitant loss of H. pylori viability. These observations suggest that during the early infection stages, administration of La1 can attenuate H. pylori-induced gastritis in vivo, possibly by reducing proinflammatory chemotactic signals responsible for the recruitment of lymphocytes and neutrophils in the lamina propria.


1999 ◽  
Vol 67 (8) ◽  
pp. 4237-4242 ◽  
Author(s):  
Nicola L. Jones ◽  
Andrew S. Day ◽  
Hilary A. Jennings ◽  
Philip M. Sherman

ABSTRACT The mechanisms involved in mediating the enhanced gastric epithelial cell apoptosis observed during infection withHelicobacter pylori in vivo are unknown. To determine whether H. pylori directly induces apoptosis of gastric epithelial cells in vitro and to define the role of the Fas-Fas ligand signal transduction cascade, human gastric epithelial cells were infected with H. pylori for up to 72 h under microaerophilic conditions. As assessed by both transmission electron microscopy and fluorescence microscopy, incubation with acagA-positive, cagE-positive, VacA-positive clinical H. pylori isolate stimulated an increase in apoptosis compared to the apoptosis of untreated AGS cells (16.0% ± 2.8% versus 5.9% ± 1.4%, P < 0.05) after 72 h. In contrast, apoptosis was not detected following infection withcagA-negative, cagE-negative, VacA-negative clinical isolates or a Campylobacter jejuni strain. In addition to stimulating apoptosis, infection with H. pylorienhanced Fas receptor expression in AGS cells to a degree comparable to that of treatment with a positive control, gamma interferon (12.5 ng/ml) (148% ± 24% and 167% ± 24% of control, respectively). The enhanced Fas receptor expression was associated with increased sensitivity to Fas-mediated cell death. Ligation of the Fas receptor with an agonistic monoclonal antibody resulted in an increase in apoptosis compared to the apoptosis of cells infected with the bacterium alone (38.5% ± 7.1% versus 16.0% ± 2.8%,P < 0.05). Incubation with neutralizing anti-Fas antibody did not prevent apoptosis of H. pylori-infected cells. Taken together, these findings demonstrate that the gastric pathogen H. pylori stimulates apoptosis of gastric epithelial cells in vitro in association with the enhanced expression of the Fas receptor. These data indicate a role for Fas-mediated signaling in the programmed cell death that occurs in response toH. pylori infection.


Microbiology ◽  
2006 ◽  
Vol 152 (10) ◽  
pp. 2919-2930 ◽  
Author(s):  
Markus Hilleringmann ◽  
Werner Pansegrau ◽  
Michael Doyle ◽  
Susan Kaufman ◽  
Mary Lee MacKichan ◽  
...  

With the steadily increasing occurrence of antibiotic resistance in bacteria, there is a great need for new antibacterial compounds. The approach described here involves targeting virulence-related bacterial type IV secretion systems (TFSSs) with small-molecule inhibitors. The cag TFSS of Helicobacter pylori was chosen as a model, and novel inhibitors directed against the cag VirB11-type ATPase Cagα were identified. The cag genes encode proteins that are components of a contact-dependent secretion system used by the bacterium to translocate the effector molecule CagA into host cells. Translocated CagA is associated with severe gastritis, and carcinoma. Furthermore, functional TFSSs and immunodominant CagA play a role in interleukin (IL)-8 induction, which is an important factor for chronic inflammation. Inhibitors of Cagα were identified by high-throughput screening of chemical libraries that comprised 524 400 small molecules. The ATPase activity of Cagα was inhibited by the selected compounds in an in vitro enzymic assay using the purified enzyme. The most active compound, CHIR-1, reduced TFSS function to an extent that cellular effects on AGS cells mediated by CagA were virtually undetectable, while reduced levels of IL-8 induction were observed. Gastric colonization by CHIR-1-pre-treated bacteria was found to be impaired in a dose-dependent manner using a mouse model of infection. Small-molecule Cagα inhibitors, the first described inhibitors of a TFSS, are potential candidates for the development of new antibacterial compounds that may lead to alternative medical treatments. The compounds are expected to impose weak selective pressure, since they target virulence functions. Moreover, the targeted virulence protein is conserved in a variety of bacterial pathogens. Additionally, TFSS inhibitors are potent tools to study the biology of TFSSs.


2001 ◽  
Vol 69 (5) ◽  
pp. 2902-2908 ◽  
Author(s):  
Kathryn A. Eaton ◽  
Dange Kersulyte ◽  
Megan Mefford ◽  
Stephen J. Danon ◽  
Steven Krakowka ◽  
...  

ABSTRACT The Helicobacter pylori chromosomal region known as the cytotoxin-gene associated pathogenicity island (cag PAI) is associated with severe disease and encodes proteins that are believed to induce interleukin (IL-8) secretion by cultured epithelial cells. The objective of this study was to evaluate the relationship between the cag PAI, induction of IL-8, and induction of neutrophilic gastric inflammation. Germ-free neonatal piglets and conventional C57BL/6 mice were given wild-type or cagdeficient mutant derivatives of H. pylori strain 26695 or SS1. Bacterial colonization was determined by plate count, gastritis and neutrophilic inflammation were quantified, and IL-8 induction in AGS cells was determined by enzyme-linked immunosorbent assay. Deletion of the entire cag region or interruption of thevirB10 or virB11 homolog had no effect on bacterial colonization, gastritis, or neutrophilic inflammation. In contrast, these mutations had variable effects on IL-8 induction, depending on the H. pylori strain. In the piglet-adapated strain 26695, which induced IL-8 secretion by AGS cells, deletion of the cag PAI decreased induction. In the mouse-adapted strain SS1, which did not induce IL-8 secretion, deletion of thecagII region or interruption of any of threecag region genes increased IL-8 induction. These results indicate that in mice and piglets (i) neither the cag PAI nor the ability to induce IL-8 in vitro is essential for colonization or neutrophilic inflammation and (ii) there is no direct relationship between the presence of the cag PAI, IL-8 induction, and neutrophilic gastritis.


2002 ◽  
Vol 9 (1) ◽  
pp. 167-175 ◽  
Author(s):  
Takafumi Ando ◽  
Richard M. Peek ◽  
Yong-Chan Lee ◽  
Uma Krishna ◽  
Kazuo Kusugami ◽  
...  

ABSTRACT Associations of Helicobacter pylori genotypes with disease differ between Western countries and Asia. Therefore, we directly compared histopathological and in vitro responses to clinical isolates with similar genotypes. Sixty-three cagA + vacAs1/m1 H. pylori isolates (United States, n = 24; Japan, n = 39) and eight cagA-negative vacAs2/m2 strains were incubated with AGS cells, and supernatants were assayed for interleukin-8 (IL-8) and for DNA fragmentation. CagA tyrosine phosphorylation in AGS cells and the sequence of the putative HP0638 (oipA) signal sequence region were determined for 22 representative strains. HP0638 and/or cag island mutant strains were created and examined in IL-8 and CagA tyrosine phosphorylation assays. Levels of IL-8 induction and DNA fragmentation were similar in the U.S. and Japanese cagA + vacAs1/m1 isolates. All 10 of the isolates with the highest IL-8 induction and 8 of the 10 isolates with the lowest IL-8 induction had an in-frame oipA open reading frame, and all 10 of the isolates with the highest IL-8 induction and 7 of the 10 isolates with the lowest IL-8 induction induced CagA tyrosine phosphorylation in AGS cells. Eight isolates from gastric ulcer patients induced significantly more apoptosis in vitro, and more severe gastritis and atrophy in vivo, than other Japanese isolates. Disruption of HP0638 did not affect IL-8 induction or CagA tyrosine phosphorylation. Thus, H. pylori cagA + vacAs1/m1 isolates from the United States and Japan induce similar IL-8 and apoptosis levels. Inactivation of HP0638 does not alter epithelial responses mediated by the cag island in vitro. Assessment of apoptosis in vitro identified a group of H. pylori isolates that induce more severe gastric inflammation and atrophy.


2021 ◽  
Vol 9 (2) ◽  
pp. 424
Author(s):  
Jianfu Ji ◽  
Hong Yang

Helicobacter pylori is a gastrointestinal pathogen with high prevalence that harms human health. Studies have shown that H. pylori can form antibiotic-tolerant biofilms, which may interfere with the efficacy of clinical antibiotic therapy. Probiotics can antagonize planktonic and biofilm pathogen cells and thus may play an auxiliary role in H. pylori antibiotic therapy. However, the effects of different probiotic strains and antibiotic combinations on H. pylori biofilms need to be further investigated. We determined the cell viability of H. pylori mature biofilms after treatment with Lactobacillus plantarum LN66 cell-free supernatant (CFS), clarithromycin (CLR), and levofloxacin (LVX) alone or in combination by the XTT method. Biofilm cells were observed by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Subsequently, protein and polysaccharide concentrations in biofilm extracellular polymeric substances (EPSs) were quantitatively detected by the Bradford method and the phenol-sulfate method. The results showed that LN66 CFS had an eradication effect on mature H. pylori biofilm. When used in combination with CLR, LN66 CFS significantly attenuated the eradication effect of CLR on biofilms; in contrast, when used in combination with LVX, LN66 CFS enhanced the disrupting effect of LVX. We speculate that the different effects of CFS and antibiotic combinations on biofilms may be related to changes in the content of proteins and polysaccharides in EPS and that the combination of CFS and CLR might promote the secretion of EPS, while the combination of CFS and LVX might have the opposite effect. Accordingly, we suggest that supplementation with L. plantarum LN66 may provide additional help when therapy involving LVX is used for clinical H. pylori biofilm eradication, whereas it may impair CLR efficacy when therapy involving CLR is used.


2021 ◽  
Vol 2 (3) ◽  
pp. 102-106
Author(s):  
Muhammed Kaya ◽  
Alpaslan Tanoğlu ◽  
Züleyha Akkan Çetinkaya ◽  
Efe Serkan Boz ◽  
Hayrunnisa Sezikli ◽  
...  

2004 ◽  
Vol 72 (6) ◽  
pp. 3549-3560 ◽  
Author(s):  
M. M. M. Abdel-Latif ◽  
H. J. Windle ◽  
K. A. Fitzgerald ◽  
Y. S. Ang ◽  
D. Ní Eidhin ◽  
...  

ABSTRACT The early growth response 1 (Egr-1) transcription factor is rapidly induced by various stimuli and is implicated in the regulation of cell growth, differentiation, and gene expression. The aim of this study was to examine the effect of Helicobacter pylori on the expression of Egr-1 and Egr-1-regulated genes in gastric epithelial AGS cells. Egr-1 expression was assayed by immunoblotting and electrophoretic mobility shift assays using H. pylori-stimulated AGS cells. Transient transfection experiments with promoter-reporter constructs of CD44, ICAM-1, and CD95L were used for expression studies. H. pylori induced the expression of Egr-1 in gastric epithelial cell lines in a dose-dependent manner, with the rapid kinetics that are typical of this class of transcription factors. Immunohistochemical studies of biopsies revealed that Egr-1 expression is more abundant in H. pylori-positive patients than in uninfected individuals. Reporter-promoter transfection studies indicated that Egr-1 binding is required for the H. pylori-induced transcriptional promoter activity of the CD44, ICAM-1, and CD95L (APO-1/Fas) constructs. The blocking of egr-1 with an antisense sequence prevented H. pylori-induced Egr-1 and CD44 protein expression. The MEK1/2 signaling cascade participates in H. pylori-mediated Egr-1 expression, but the p38 pathway does not. The data indicate that H. pylori induces Egr-1 expression in AGS cells in vitro and that the Egr-1 protein is readily detectable in biopsies from H. pylori-positive subjects. These observations suggest that H. pylori-associated Egr-1 expression may play a role, in part, in H. pylori-induced pathology.


Author(s):  
Ji Yeong Yang ◽  
Pumsoo Kim ◽  
Seok-Hoo Jeong ◽  
Seong Woong Lee ◽  
Yu Sik Myung ◽  
...  

Helicobacter pylori (H. pylori) is a primary etiologic factor in gastric diseases. Sulglycotide is a glycopeptide derived from pig duodenal mucin. Esterification of its carbohydrate chains with sulfate groups creates a potent gastroprotective agent used to treat various gastric diseases. We investigated the inhibitory effects of sulglycotide on adhesion and inflammation after H. pylori infection in human gastric adenocarcinoma cells (AGS cells). H. pylori reference strain 60190 (ATCC 49503) was cultured on Brucella agar supplemented with 10% bovine serum. Sulgylcotide-mediated growth inhibition of H. pylori was evaluated using the broth dilution method. Inhibition of H. pylori adhesion to AGS cells by sulglycotide was assessed using a urease assay. Effects of sulglycotide on the translocation of virulence factors was measured using western blot to detect cytotoxin-associated protein A (CagA) and vacuolating cytotoxin A (VacA) proteins. Inhibition of IL-8 secretion was measured using enzyme-linked immunosorbent assay (ELISA) to determine the effects of sulglycotide on inflammation. Sulglycotide did not inhibit the growth of H. pylori, however, after six and 12 hours of infection on AGS cells, H. pylori adhesion was significantly inhibited by approximately 60% by various concentrations of sulglycotide. Sulglycotide decreased H. pylori virulence factor (CagA and VacA) translocation to AGS cells and inhibited IL-8 secretion. Sulglycotide inhibited H. pylori adhesion and inflammation after infection of AGS cells in vitro. These results support the use of sulglycotide to treat H. pylori infections.


Sign in / Sign up

Export Citation Format

Share Document