Molecular targets of non-steroidal anti-inflammatory drugs in neurodegenerative diseases

2007 ◽  
Vol 64 (11) ◽  
pp. 1403-1418 ◽  
Author(s):  
A. Lleo ◽  
E. Galea ◽  
M. Sastre
2021 ◽  
Author(s):  
Sven Fengler ◽  
Birgit Kurkowsky ◽  
Sanjeev Kumar Kaushalya ◽  
Wera Roth ◽  
Philip Denner ◽  
...  

Optimizing drug candidates for blood-brain barrier (BBB) penetration in humans remains one of the key challenges and many devastating brain diseases including neurodegenerative diseases still do not have adequate treatments. So far, it has been difficult to establish state-of-the-art human stem cell derived in vitro models that mimic physiological barrier properties including a 3D microvasculature in a format that is scalable enough to screen drugs for BBB penetration in early drug development phases. To address this challenge, we established human induced pluripotent stem cell (iPSC)-derived brain endothelial microvessels in a standardized and scalable multi-well plate format. iPSC-derived brain microvascular endothelial cells (BMECs) were supplemented with primary cell conditioned media and grew to intact microvessels in 10 days of culturing. Produced microvessels show a typical BBB phenotype including endothelial protein expression, tight-junctions and polarized localization of efflux transporter. Microvessels exhibited physiological relevant trans-endothelial electrical resistance (TEER), were leak tight for 10 kDa dextran-Alexa 647 and strongly limited the permeability of sodium fluorescein (NaF). Permeability tests with reference compounds confirmed the suitability of our model as platform to identify potential BBB penetrating anti-inflammatory drugs. In summary, the here presented brain microvessel platform recapitulates physiological properties and allows rapid screening of BBB permeable anti-inflammatory compounds that has been suggested as promising substances to cure so far untreatable neurodegenerative diseases.


2018 ◽  
Vol 132 (14) ◽  
pp. 1529-1543 ◽  
Author(s):  
Simona Ronchetti ◽  
Graziella Migliorati ◽  
Stefano Bruscoli ◽  
Carlo Riccardi

An established body of knowledge and clinical practice has argued in favor of the use of glucocorticoids in various chronic inflammatory and autoimmune diseases. However, the very well-known adverse effects associated with their treatment hampers continuation of therapy with glucocorticoids. Analyses of the molecular mechanisms underlying the actions of glucocorticoids have led to the discovery of several mediators that add complexity and diversity to the puzzling world of these hormones and anti-inflammatory drugs. Such mediators hold great promise as alternative pharmacologic tools to be used as anti-inflammatory drugs with the same properties as glucocorticoids, but avoiding their metabolic side effects. This review summarizes findings about the molecular targets and mediators of glucocorticoid function.


2016 ◽  
Vol 21 (6) ◽  
pp. 567-578 ◽  
Author(s):  
José Pérez del Palacio ◽  
Caridad Díaz ◽  
Mercedes de la Cruz ◽  
Frederick Annang ◽  
Jesús Martín ◽  
...  

It is widely accepted that central nervous system inflammation and systemic inflammation play a significant role in the progression of chronic neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease, neurotropic viral infections, stroke, paraneoplastic disorders, traumatic brain injury, and multiple sclerosis. Therefore, it seems reasonable to propose that the use of anti-inflammatory drugs might diminish the cumulative effects of inflammation. Indeed, some epidemiological studies suggest that sustained use of anti-inflammatory drugs may prevent or slow down the progression of neurodegenerative diseases. However, the anti-inflammatory drugs and biologics used clinically have the disadvantage of causing side effects and a high cost of treatment. Alternatively, natural products offer great potential for the identification and development of bioactive lead compounds into drugs for treating inflammatory diseases with an improved safety profile. In this work, we present a validated high-throughput screening approach in 96-well plate format for the discovery of new molecules with anti-inflammatory/immunomodulatory activity. The in vitro models are based on the quantitation of nitrite levels in RAW264.7 murine macrophages and interleukin-8 in Caco-2 cells. We have used this platform in a pilot project to screen a subset of 5976 noncytotoxic crude microbial extracts from the MEDINA microbial natural product collection. To our knowledge, this is the first report on an high-throughput screening of microbial natural product extracts for the discovery of immunomodulators.


Author(s):  
Chen Chen ◽  
Chenguang Wang ◽  
Xuebin Zhou ◽  
Lingxian Xu ◽  
Han Chen ◽  
...  

2006 ◽  
Vol 12 (27) ◽  
pp. 3509-3519 ◽  
Author(s):  
Yossi Gilgun-Sherki ◽  
Eldad Melamed ◽  
Daniel Offen

Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
V Francisco ◽  
A Figueirinha ◽  
B Neves ◽  
C Garcia-Rodriguez ◽  
M Lopes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document