scholarly journals Membrane-bound IL-6R is upregulated on Th17 cells and inhibits Treg cell migration by regulating post-translational modification of VASP in autoimmune arthritis

2021 ◽  
Vol 79 (1) ◽  
Author(s):  
Shuaifeng Yan ◽  
Viktoria Golumba-Nagy ◽  
Konstantin Kotschenreuther ◽  
Jan Thiele ◽  
Nasrin Refaian ◽  
...  

AbstractAutoimmune arthritis is characterized by impaired regulatory T (Treg) cell migration into inflamed joint tissue and by dysregulation of the balance between Treg cells and Th17 cells. Interleukin-6 (IL-6) is known to contribute to this dysregulation, but the molecular mechanisms behind impaired Treg cell migration remain largely unknown. In this study, we assessed dynamic changes in membrane-bound IL-6 receptor (IL6R) expression levels on Th17 cells by flow cytometry during the development of collagen-induced arthritis (CIA). In a next step, bioinformatics analysis based on proteomics was performed to evaluate potential pathways affected by altered IL-6R signaling in autoimmune arthritis. Our analysis shows that membrane-bound IL-6R is upregulated on Th17 cells and is inversely correlated with IL-6 serum levels in experimental autoimmune arthritis. Moreover, IL-6R expression is significantly increased on Th17 cells from untreated patients with rheumatoid arthritis (RA). Interestingly, CD4+ T cells from CIA mice and RA patients show reduced phosphorylation of vasodilator-stimulated phosphoprotein (VASP). Bioinformatics analysis based on proteomics of CD4+ T cells with low or high phosphorylation levels of VASP revealed that integrin signaling and related pathways are significantly enriched in cells with low phosphorylation of VASP. Specific inhibition of p-VASP reduces the migratory function of Treg cells but has no influence on effector CD4+ T cells. Importantly, IL-6R blockade restores the phosphorylation level of VASP, thereby improving the migratory function of Treg cells from RA patients. Thus, our results establish a link between IL6R signaling and phosphorylation of VASP, which controls Treg cell migration in autoimmune arthritis.

2002 ◽  
Vol 196 (2) ◽  
pp. 255-260 ◽  
Author(s):  
Helmut Jonuleit ◽  
Edgar Schmitt ◽  
Hacer Kakirman ◽  
Michael Stassen ◽  
Jürgen Knop ◽  
...  

Regulatory CD4+CD25+ T cells (Treg) are mandatory for maintaining immunologic self-tolerance. We demonstrate that the cell-cell contact–mediated suppression of conventional CD4+ T cells by human CD25+ Treg cells is fixation resistant, independent from membrane-bound TGF-β but requires activation and protein synthesis of CD25+ Treg cells. Coactivation of CD25+ Treg cells with Treg cell–depleted CD4+ T cells results in anergized CD4+ T cells that in turn inhibit the activation of conventional, freshly isolated CD4+ T helper (Th) cells. This infectious suppressive activity, transferred from CD25+ Treg cells via cell contact, is cell contact–independent and partially mediated by soluble transforming growth factor (TGF)-β. The induction of suppressive properties in conventional CD4+ Th cells represents a mechanism underlying the phenomenon of infectious tolerance. This explains previously published conflicting data on the role of TGF-β in CD25+ Treg cell–induced immunosuppression.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5434-5434
Author(s):  
Raewyn Broady ◽  
Sarah Q. Crome ◽  
Jessie Yu ◽  
Jan P Dutz ◽  
Megan K Levings

Abstract Acute graft versus host disease (aGVHD) following haematopoietic stem cell transplantation (HCT) occurs when donor T cells infused with the graft recognise and react to histo-incompatible recipient antigens causing tissue damage. Historically, the inflammatory response in aGVHD was attributed to alloreactive CD4+ T helper and CD8+ cytotoxic T cells and alterations in cytokine production. Recently, a new CD4+ T cell subset, characterised by IL-17 production has been identified. TH17 cells produce high levels of proinflammatory cytokines, including IL-17A, IL-17F, and IL-22, and have been implicated in solid organ rejection and more recently a number of murine studies suggest that Th17 cells play a role in the development of aGVHD. It is well known that FOXP3+ regulatory T cells (Tregs) are critical for the maintenance of self-tolerance, and control the immune response to alloantigens. Murine studies have shown that adoptive transfer of these cells can prevent acute GVHD whereas selective depletion leads to an increased severity. In humans, Tregs also appear to control acute GVHD as they occur at a lower frequency in the peripheral blood patients with aGVHD compared to patients without GVHD. These findings have led to active interest into the use of these cells to prevent or decrease GVHD following allogeneic HCT. It has been reported that in vitro, Th17 cells are resistant to Treg cell mediated suppression of proliferation and IL-17 production, suggesting that the effector functions of Th17 cells might not be susceptible to Treg-cell-mediated inhibition. If true, this would suggest that Treg-based therapies might not be effective at limiting Th17-cell-mediated tissue damage. However, there is currently no evidence regarding whether Treg cells affect the phenotype or function of Th17 cells in tissues. Understanding the interactions between suppressive Tregs and pro-inflammatory T effectors in tissues that are targets of aGVHD, such as the skin, is critical to better define the potential of Tregs as adoptive therapy for the prevention or treatment of aGVHD. In order to address this question, we developed two methods to generate human Th17 cells, one based on over-expression of RORC2 and the other on sorting CCR4+CCR6+CD4+ T cells. We found that ectopic expression of RORC induces a cytokine and chemokine receptor profile analogous to in vivo differentiated Th17 cells. Although expression of RORC2 made CD4+ T cells resistant to Treg-cell mediated suppression of proliferation and IL-17 production, production of IFN-g, TNF-a and IL-6 could be suppressed in these Th17-like cells. In order to further delineate the functional consequence of the interaction between Treg and Th17 cells in tissues we developed a modified the human skin explant model that involves culture of 4 mm punch biopsies of skin with ex vivo Th17 cells (CCR4+CCR6+CD4+ T cells), RORC2 transduced CD4+ T cells, or controls, in the presence or absence of Treg and grading the graft-versus-host reactivity (grades I–IV) histopathologically. Preliminary data suggest that Th17 cells cause significant tissue destruction in this skin explant model, and experiments are ongoing to determine whether Treg cells can counteract these effects.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3194
Author(s):  
Pierre Stéphan ◽  
Raphaëlle Lautraite ◽  
Allison Voisin ◽  
Yenkel Grinberg-Bleyer

Extensive research in the past decades has highlighted the tight link between immunity and cancer, leading to the development of immunotherapies that have revolutionized cancer care. However, only a fraction of patients display durable responses to these treatments, and a deeper understanding of the cellular and mechanisms orchestrating immune responses to tumors is mandatory for the discovery of novel therapeutic targets. Among the most scrutinized immune cells, Forkhead Box Protein P3 (Foxp3)+ Regulatory T cells (Treg cells) are central inhibitors of protective anti-tumor immunity. These tumor-promoting functions render Treg cells attractive immunotherapy targets, and multiple strategies are being developed to inhibit their recruitment, survival, and function in the tumor microenvironment. In this context, it is critical to decipher the complex and multi-layered molecular mechanisms that shape and stabilize the Treg cell transcriptome. Here, we provide a global view of the transcription factors, and their upstream signaling pathways, involved in the programming of Treg cell homeostasis and functions in cancer. We also evaluate the feasibility and safety of novel therapeutic approaches aiming at targeting specific transcriptional regulators.


2007 ◽  
Vol 27 (23) ◽  
pp. 8065-8072 ◽  
Author(s):  
Li-Fan Lu ◽  
Marc A. Gavin ◽  
Jeffrey P. Rasmussen ◽  
Alexander Y. Rudensky

ABSTRACT Global analyses of gene expression in regulatory T (Treg) cells, whose development is critically dependent upon the transcription factor Foxp3, have provided many clues as to the molecular mechanisms these cells employ to control immune responses and establish immune tolerance. Through these studies, G protein-coupled receptor 83 (GPR83) was found to be expressed at high levels in Treg-cell populations. However, its function remained unclear. Recently, it has been suggested that GPR83 is involved in the induction of Foxp3 expression in the peripheral nonregulatory Foxp3− CD4 T cells. To examine a role for GPR83 in Treg-cell biology, we generated and characterized GPR83-deficient mice. We have shown that GPR83 abolition does not result in measurable pathology or changes in the numbers or function of Foxp3+ Treg cells. Furthermore, while in vitro analysis suggested a potential involvement of GPR83 in transforming growth factor β-dependent Foxp3 induction, there was no difference in the ability of nonregulatory GPR83-deficient and nondeficient Foxp3− T cells to acquire Foxp3 expression in vivo. Collectively, our results demonstrate that GPR83 is dispensable for Treg-cell development and function.


Blood ◽  
2008 ◽  
Vol 112 (13) ◽  
pp. 4953-4960 ◽  
Author(s):  
Mojgan Ahmadzadeh ◽  
Aloisio Felipe-Silva ◽  
Bianca Heemskerk ◽  
Daniel J. Powell ◽  
John R. Wunderlich ◽  
...  

Abstract Regulatory T (Treg) cells are often found in human tumors; however, their functional characteristics have been difficult to evaluate due to low cell numbers and the inability to adequately distinguish between activated and Treg cell populations. Using a novel approach, we examined the intracellular cytokine production capacity of tumor-infiltrating T cells in the single-cell suspensions of enzymatically digested tumors to differentiate Treg cells from effector T cells. Similar to Treg cells in the peripheral blood of healthy individuals, tumor-infiltrating FOXP3+CD4 T cells, unlike FOXP3− T cells, were unable to produce IL-2 and IFN-γ upon ex vivo stimulation, indicating that FOXP3 expression is a valid biological marker for human Treg cells even in the tumor microenvironment. Accordingly, we enumerated FOXP3+CD4 Treg cells in intratumoral and peritumoral sections of metastatic melanoma tumors and found a significant increase in proportion of FOXP3+CD4 Treg cells in the intratumoral compared with peritumoral areas. Moreover, their frequencies were 3- to 5-fold higher in tumors than in peripheral blood from the same patients or healthy donors, respectively. These findings demonstrate that the tumor-infiltrating CD4 Treg cell population is accurately depicted by FOXP3 expression, they selectively accumulate in tumors, and their frequency in peripheral blood does not properly reflect tumor microenvironment.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A553-A553
Author(s):  
McLane Watson ◽  
Paolo Vignali ◽  
Steven Mullet ◽  
Abigail Overacre-Delgoffe ◽  
Ronal Peralta ◽  
...  

BackgroundRegulatory T (Treg) cells are vital for preventing autoimmunity but are a major barrier to robust cancer immunity as the tumor microenvironment (TME) recruits and promotes their function. The deregulated cellular metabolism of tumor cells leads to a metabolite-depleted, hypoxic, and acidic TME. While the TME impairs the effector function of highly glycolytic tumor infiltrating CD8 T cells, Treg cell suppressive function is maintained. Further, studies of in vitro induced and ex vivo Treg cells reveal a distinct metabolic profile compared to effector T cells. Thus, it may be that the altered metabolic landscape of the TME and the increased activity of intratumoral Treg cells are linked.MethodsFlow cytometry, isotopic flux analysis, Foxp3 driven Cre-lox, glucose tracers, Seahorse extracellular flux analysis, RNA sequencing.ResultsHere we show Treg cells display heterogeneity in terms of their glucose metabolism and can engage an alternative metabolic pathway to maintain their high suppressive function and proliferation within the TME and other tissues. Tissue derived Treg cells (both at the steady state and under inflammatory conditions) show broad heterogeneity in their ability to take up glucose. However, glucose uptake correlates with poorer suppressive function and long-term functional stability, and culture of Treg cells in high glucose conditions decreased suppressive function. Treg cells under low glucose conditions upregulate genes associated with the uptake and metabolism of the glycolytic end-product lactic acid. Treg cells withstand high lactate conditions, and lactate treatment prevents the destabilizing effects of high glucose culture. Treg cells utilize lactate within the TCA cycle and generate phosphoenolpyruvate (PEP), a critical intermediate that can fuel intratumoral Treg cell proliferation in vivo. Using mice with a Treg cell-restricted deletion of lactate transporter Slc16a1 (MCT1) we show MCT1 is dispensable for peripheral Treg cell function but required intratumorally, resulting in slowed tumor growth and prolonged survival.ConclusionsThese data support a model in which Treg cells are metabolically flexible such that they can utilize ‘alternative’ metabolites present in the TME to maintain their suppressive identity. Further, our studies support the notion that tumors avoid immune destruction not only by depriving effector T cells of essential nutrients, but also by metabolically supporting regulatory T cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Deepika Watts ◽  
Marthe Janßen ◽  
Mangesh Jaykar ◽  
Francesco Palmucci ◽  
Marc Weigelt ◽  
...  

Type 1 diabetes (T1D) represents a hallmark of the fatal multiorgan autoimmune syndrome affecting humans with abrogated Foxp3+ regulatory T (Treg) cell function due to Foxp3 gene mutations, but whether the loss of Foxp3+ Treg cell activity is indeed sufficient to promote β cell autoimmunity requires further scrutiny. As opposed to human Treg cell deficiency, β cell autoimmunity has not been observed in non-autoimmune-prone mice with constitutive Foxp3 deficiency or after diphtheria toxin receptor (DTR)-mediated ablation of Foxp3+ Treg cells. In the spontaneous nonobese diabetic (NOD) mouse model of T1D, constitutive Foxp3 deficiency did not result in invasive insulitis and hyperglycemia, and previous studies on Foxp3+ Treg cell ablation focused on Foxp3DTR NOD mice, in which expression of a transgenic BDC2.5 T cell receptor (TCR) restricted the CD4+ TCR repertoire to a single diabetogenic specificity. Here we revisited the effect of acute Foxp3+ Treg cell ablation on β cell autoimmunity in NOD mice in the context of a polyclonal TCR repertoire. For this, we took advantage of the well-established DTR/GFP transgene of DEREG mice, which allows for specific ablation of Foxp3+ Treg cells without promoting catastrophic autoimmune diseases. We show that the transient loss of Foxp3+ Treg cells in prediabetic NOD.DEREG mice is sufficient to precipitate severe insulitis and persistent hyperglycemia within 5 days after DT administration. Importantly, DT-treated NOD.DEREG mice preserved many clinical features of spontaneous diabetes progression in the NOD model, including a prominent role of diabetogenic CD8+ T cells in terminal β cell destruction. Despite the severity of destructive β cell autoimmunity, anti-CD3 mAb therapy of DT-treated mice interfered with the progression to overt diabetes, indicating that the novel NOD.DEREG model can be exploited for preclinical studies on T1D under experimental conditions of synchronized, advanced β cell autoimmunity. Overall, our studies highlight the continuous requirement of Foxp3+ Treg cell activity for the control of genetically pre-installed autoimmune diabetes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Khalid W. Kalim ◽  
Jun-Qi Yang ◽  
Vishnu Modur ◽  
Phuong Nguyen ◽  
Yuan Li ◽  
...  

RhoA of the Rho GTPase family is prenylated at its C-terminus. Prenylation of RhoA has been shown to control T helper 17 (Th17) cell-mediated colitis. By characterizing T cell-specific RhoA conditional knockout mice, we have recently shown that RhoA is required for Th2 and Th17 cell differentiation and Th2/Th17 cell-mediated allergic airway inflammation. It remains unclear whether RhoA plays a cell-intrinsic role in regulatory T (Treg) cells that suppress effector T cells such as Th2/Th17 cells to maintain immune tolerance and to promote tumor immune evasion. Here we have generated Treg cell-specific RhoA-deficient mice. We found that homozygous RhoA deletion in Treg cells led to early, fatal systemic inflammatory disorders. The autoimmune responses came from an increase in activated CD4+ and CD8+ T cells and in effector T cells including Th17, Th1 and Th2 cells. The immune activation was due to impaired Treg cell homeostasis and increased Treg cell plasticity. Interestingly, heterozygous RhoA deletion in Treg cells did not affect Treg cell homeostasis nor cause systemic autoimmunity but induced Treg cell plasticity and an increase in effector T cells. Importantly, heterozygous RhoA deletion significantly inhibited tumor growth, which was associated with tumor-infiltrating Treg cell plasticity and increased tumor-infiltrating effector T cells. Collectively, our findings suggest that graded RhoA expression in Treg cells distinguishes tumor immunity from autoimmunity and that rational targeting of RhoA in Treg cells may trigger anti-tumor T cell immunity without causing autoimmune responses.


Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Dan Ye ◽  
Yun Xu

Both resident microglia and infiltrated peripheral T cells have been proved to play important roles in the pathology of stroke. It is well accepted that activated microglia exert dual roles, including pro-inflammatory (M1) and anti-inflammatory (M2) functions. However, the mechanism regulating microglial polarization remains elusive. T cells are recruited into the ischemic area within 24 h after stroke, which also exhibit pro-inflammatory (Th1, Th17) and anti-inflammatory (Th2, Treg) functions. The interaction between microglia and T cells after stroke is barely understood, which may be served as modifiers of pathobiology in stroke. Here we described the role of T cells in the microglial polarization in mouse experimental stroke. We isolated T cells from spleens of MCAO mice at 24 h and 72 h, respectively, and then added to cultured microglia for 24 h. Our results indicated that splenic T cells obtained at 24 h after MCAO selectively promoted microglia polarize to a pro-inflammatory (M1) state, while T cells obtained at 72 h, favored microglia polarize to an anti-inflammatory (M2) state. The results of flow cytometry showed that Th1 and Th17 cells increased at 24 h after MCAO while Th2 and Treg cells increased at 72 h after MCAO. This study implicates that distinct subtypes of T cells contribute differentially to microglial polarization after stroke onset. Therefore, treatments aiming at modulating the ratios of T cells to anti-inflammatory cells have the potential to induce microglial polarize to M2 phenotype and improve the outcome of ischemic stroke.


Sign in / Sign up

Export Citation Format

Share Document