scholarly journals Sharp Interface Limit of a Stokes/Cahn–Hilliard System, Part II: Approximate Solutions

2021 ◽  
Vol 23 (2) ◽  
Author(s):  
Helmut Abels ◽  
Andreas Marquardt

AbstractWe construct rigorously suitable approximate solutions to the Stokes/Cahn–Hilliard system by using the method of matched asymptotics expansions. This is a main step in the proof of convergence given in the first part of this contribution, [3], where the rigorous sharp interface limit of a coupled Stokes/Cahn–Hilliard system in a two dimensional, bounded and smooth domain is shown. As a novelty compared to earlier works, we introduce fractional order terms, which are of significant importance, but share the problematic feature that they may not be uniformly estimated in $$\epsilon $$ ϵ in arbitrarily strong norms. As a consequence, gaining necessary estimates for the error, which occurs when considering the approximations in the Stokes/Cahn–Hilliard system, is rather involved.

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Fukang Yin ◽  
Junqiang Song ◽  
Yongwen Wu ◽  
Lilun Zhang

A numerical method is presented to obtain the approximate solutions of the fractional partial differential equations (FPDEs). The basic idea of this method is to achieve the approximate solutions in a generalized expansion form of two-dimensional fractional-order Legendre functions (2D-FLFs). The operational matrices of integration and derivative for 2D-FLFs are first derived. Then, by these matrices, a system of algebraic equations is obtained from FPDEs. Hence, by solving this system, the unknown 2D-FLFs coefficients can be computed. Three examples are discussed to demonstrate the validity and applicability of the proposed method.


Author(s):  
Helmut Abels

AbstractWe consider the sharp interface limit of a convective Allen–Cahn equation, which can be part of a Navier–Stokes/Allen–Cahn system, for different scalings of the mobility $$m_\varepsilon =m_0\varepsilon ^\theta $$ m ε = m 0 ε θ as $$\varepsilon \rightarrow 0$$ ε → 0 . In the case $$\theta >2$$ θ > 2 we show a (non-)convergence result in the sense that the concentrations converge to the solution of a transport equation, but they do not behave like a rescaled optimal profile in normal direction to the interface as in the case $$\theta =0$$ θ = 0 . Moreover, we show that an associated mean curvature functional does not converge to the corresponding functional for the sharp interface. Finally, we discuss the convergence in the case $$\theta =0,1$$ θ = 0 , 1 by the method of formally matched asymptotics.


Author(s):  
Sanaullah Mastoi

There are various methods to solve the physical life problem involving engineering, scientific and biological systems. It is found that numerical methods are approximate solutions. In this way, randomly generated finite difference grids achieve an approximation with fewer iterations. The idea of randomly generated grids in cartesian coordinates and polar form are compared with the exact, iterative method, uniform grids, and approximate solutions in a generalized expansion form of two-dimensional fractional-order Legendre functions. The most ideal and benchmarking method is the finite difference method over randomly generated grids on Cartesian coordinates, polar coordinates used for numerical solutions. This concept motivates the investigation of the effects of the randomly generated meshes. The two-dimensional equation is solved over randomly generated meshes to test randomly generated grids and the implementation. The feasibility of the numerical solution is analyzed by comparing simulation profiles.


Author(s):  
Ľubomír Baňas ◽  
Huanyu Yang ◽  
Rongchan Zhu

AbstractWe study the sharp interface limit of the two dimensional stochastic Cahn-Hilliard equation driven by two types of singular noise: a space-time white noise and a space-time singular divergence-type noise. We show that with appropriate scaling of the noise the solutions of the stochastic problems converge to the solutions of the determinisitic Mullins-Sekerka/Hele-Shaw problem.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2215
Author(s):  
Haji Gul ◽  
Sajjad Ali ◽  
Kamal Shah ◽  
Shakoor Muhammad ◽  
Thanin Sitthiwirattham ◽  
...  

In this article, we introduce a new algorithm-based scheme titled asymptotic homotopy perturbation method (AHPM) for simulation purposes of non-linear and linear differential equations of non-integer and integer orders. AHPM is extended for numerical treatment to the approximate solution of one of the important fractional-order two-dimensional Helmholtz equations and some of its cases . For probation and illustrative purposes, we have compared the AHPM solutions to the solutions from another existing method as well as the exact solutions of the considered problems. Moreover, it is observed that the symmetry or asymmetry of the solution of considered problems is invariant under the homotopy definition. Error estimates for solutions are also provided. The approximate solutions of AHPM are tabulated and plotted, which indicates that AHPM is effective and explicit.


2021 ◽  
Author(s):  
Lixiang Han ◽  
Mengmeng Yang ◽  
Peiting Wen ◽  
Wei Gao ◽  
nengjie huo ◽  
...  

One dimensional (1D)-two dimensional (2D) van der Waals (vdWs) mixed-dimensional heterostructures with advantages of atomically sharp interface, high quality and good compatibility have attracted tremendous attention in recent years. The...


Sign in / Sign up

Export Citation Format

Share Document