scholarly journals Modeling of Fluid Flow in a Flexible Vessel with Elastic Walls

2021 ◽  
Vol 23 (3) ◽  
Author(s):  
Vladimir Kozlov ◽  
Sergei Nazarov ◽  
German Zavorokhin

AbstractWe exploit a two-dimensional model (Ghosh et al. in Q J Mech Appl Math 71(3):349–367, 2018; Kozlov and Nazarov in Dokl Phys 56(11):560–566, 2011, J Math Sci 207(2):249–269, 2015) describing the elastic behavior of the wall of a flexible blood vessel which takes interaction with surrounding muscle tissue and the 3D fluid flow into account. We study time periodic flows in an infinite cylinder with such intricate boundary conditions. The main result is that solutions of this problem do not depend on the period and they are nothing else but the time independent Poiseuille flow. Similar solutions of the Stokes equations for the rigid wall (the no-slip boundary condition) depend on the period and their profile depends on time.

Author(s):  
Joris C. G. Verschaeve

By means of the continuity equation of the incompressible Navier–Stokes equations, additional physical arguments for the derivation of a formulation of the no-slip boundary condition for the lattice Boltzmann method for straight walls at rest are obtained. This leads to a boundary condition that is second-order accurate with respect to the grid spacing and conserves mass. In addition, the boundary condition is stable for relaxation frequencies close to two.


2019 ◽  
Vol 9 (1) ◽  
pp. 633-643
Author(s):  
Hugo Beirão da Veiga ◽  
Jiaqi Yang

Abstract H.-O. Bae and H.J. Choe, in a 1997 paper, established a regularity criteria for the incompressible Navier-Stokes equations in the whole space ℝ3 based on two velocity components. Recently, one of the present authors extended this result to the half-space case $\begin{array}{} \displaystyle \mathbb{R}^3_+ \end{array}$. Further, this author in collaboration with J. Bemelmans and J. Brand extended the result to cylindrical domains under physical slip boundary conditions. In this note we obtain a similar result in the case of smooth arbitrary boundaries, but under a distinct, apparently very similar, slip boundary condition. They coincide just on flat portions of the boundary. Otherwise, a reciprocal reduction between the two results looks not obvious, as shown in the last section below.


2011 ◽  
Vol 668 ◽  
pp. 100-112 ◽  
Author(s):  
B. U. FELDERHOF ◽  
G. OOMS

The flow of a viscous compressible fluid in a circular tube generated by a sudden impulse at a point on the axis is studied on the basis of the linearized Navier–Stokes equations. A no-slip boundary condition is assumed to hold on the wall of the tube. An efficient numerical scheme has been developed for the calculation of flow velocity and pressure disturbance as a function of position and time.


2017 ◽  
Vol 743 ◽  
pp. 480-485
Author(s):  
Evgeny Borzenko ◽  
Olga Dyakova

The planar flow of a Newtonian incompressible fluid in a T-shaped channel is investigated. Three fluid interaction models with solid walls are considered: no slip boundary condition, Navier slip boundary condition and slip boundary condition with slip yield stress. The fluid flow is provided by uniform pressure profiles at the boundary sections of the channel. The problem is numerically solved using a finite difference method based on the SIMPLE procedure. Characteristic flow regimes have been found for the described models of liquid interaction with solid walls. The estimation of the influence of the Reynolds number, pressure applied to the boundary sections and the parameters of these models on the flow pattern was performed. The criterial dependences describing main characteristics of the flow under conditions of the present work have been demonstrated.


Author(s):  
Xiaohong Yan ◽  
Qiuwang Wang

The effects of compressibility and rarefaction for gas flow in microchannels have been extensively studied separately. However, these two effects are always combined for gas flow in microchannels. In this paper, the two-dimensional compressible Navier-Stokes equations are solved for gas flow in parallel plate channels with a slip boundary condition to study the combined effects of compressibility and rarefaction on the friction factor. The numerical methodology is based on the control volume finite difference scheme. It is found that the effect of compressibility increases the velocity gradient near the wall which then increases the friction factor. On the other hand, increasing the velocity gradient near the wall leads to a much larger slip velocity and implies a stronger rarefaction effect and a corresponding decrease in the friction factor. These two opposite effects make the effect of compressibility on friction factor for slip flow weaker than that for no-slip compressible flow. A correlation among fRe, Kn and Ma is presented. The correlation is validated with available experimental and analytical results.


Author(s):  
Lotfi Grine ◽  
Abdel-Hakim Bouzid

In recent years, few experimental and theoretical studies have been conducted to predict gas leak rate through gaskets. However a very limited work is done on liquid leak rates through gaskets. A new method based on a slip flow model to predict liquid flow through nano-porous gaskets is presented. A recent study [1] had shown that the leakage prediction based on the porosity parameter approach was successful in predicting gaseous leaks and an extrapolation of the latter to liquid leaks is the purpose of this study. In the present article, an analytical-computational methodology based on the number and pore size to predict liquid nanoflow in the slip flow regime through gaskets is presented. The formulation is based on the Navier-Stokes equations associated to slip boundary condition at the wall. The mass leak rates through a gasket considered as a porous media under variable experimentally conditions of (fluid media, pressure, and gasket stress) were conducted on a test bench. Gaseous and liquid leaks are measured and comparisons are made with the analytical predictions.


Author(s):  
Marc-Florian Uth ◽  
Alf Crüger ◽  
Heinz Herwig

In micro or nano flows a slip boundary condition is often needed to account for the special flow situation that occurs at this level of refinement. A common model used in the Finite Volume Method (FVM) is the Navier-Slip model which is based on the velocity gradient at the wall. It can be implemented very easily for a Navier-Stokes (NS) Solver. Instead of directly solving the Navier-Stokes equations, the Lattice-Boltzmann method (LBM) models the fluid on a particle basis. It models the streaming and interaction of particles statistically. The pressure and the velocity can be calculated at every time step from the current particle distribution functions. The resulting fields are solutions of the Navier-Stokes equations. Boundary conditions in LBM always not only have to define values for the macroscopic variables but also for the particle distribution function. Therefore a slip model cannot be implemented in the same way as in a FVM-NS solver. An additional problem is the structure of the grid. Curved boundaries or boundaries that are non-parallel to the grid have to be approximated by a stair-like step profile. While this is no problem for no-slip boundaries, any other velocity boundary condition such as a slip condition is difficult to implement. In this paper we will present two different implementations of slip boundary conditions for the Lattice-Boltzmann approach. One will be an implementation that takes advantage of the microscopic nature of the method as it works on a particle basis. The other one is based on the Navier-Slip model. We will compare their applicability for different amounts of slip and different shapes of walls relative to the numerical grid. We will also show what limits the slip rate and give an outlook of how this can be avoided.


Sign in / Sign up

Export Citation Format

Share Document