Landslide Tsunami Hazard Along the Upper US East Coast: Effects of Slide Deformation, Bottom Friction, and Frequency Dispersion

2018 ◽  
Vol 176 (7) ◽  
pp. 3059-3098 ◽  
Author(s):  
Lauren Schambach ◽  
Stephan T. Grilli ◽  
James T. Kirby ◽  
Fengyan Shi
2016 ◽  
Vol 86 (1) ◽  
pp. 353-391 ◽  
Author(s):  
Stéphan T. Grilli ◽  
Mike Shelby ◽  
Olivier Kimmoun ◽  
Guillaume Dupont ◽  
Dmitry Nicolsky ◽  
...  

2009 ◽  
Vol 264 (1-2) ◽  
pp. 74-97 ◽  
Author(s):  
Stephan T. Grilli ◽  
Oliver-Denzil S. Taylor ◽  
Christopher D.P. Baxter ◽  
Stefan Maretzki

2018 ◽  
Vol 6 (4) ◽  
pp. 111 ◽  
Author(s):  
Hai Tan ◽  
Gioele Ruffini ◽  
Valentin Heller ◽  
Shenghong Chen

This study presents a numerical landslide-tsunami hazard assessment technique for applications in reservoirs, lakes, fjords, and the sea. This technique is illustrated with hypothetical scenarios at Es Vedrà, offshore Ibiza, although currently no evidence suggests that this island may become unstable. The two selected scenarios include two particularly vulnerable locations, namely: (i) Cala d’Hort on Ibiza (3 km away from Es Vedrà) and (ii) Marina de Formentera (23 km away from Es Vedrà). The violent wave generation process is modelled with the meshless Lagrangian method smoothed particle hydrodynamics. Further offshore, the simulations are continued with the less computational expensive code SWASH (Simulating WAves till SHore), which is based on the non-hydrostatic non-linear shallow water equations that are capable of considering bottom friction and frequency dispersion. The up to 133-m high tsunamis decay relatively fast with distance from Es Vedrà; the wave height 5 m offshore Cala d’Hort is 14.2 m, reaching a maximum run-up height of over 21.5 m, whilst the offshore wave height (2.7 m) and maximum inundation depth at Marina de Formentera (1.2 m) are significantly smaller. This study illustrates that landslide-tsunami hazard assessment can nowadays readily be conducted under consideration of site-specific details such as the bathymetry and topography, and intends to support future investigations of real landslide-tsunami cases.


Author(s):  
India Woodruff ◽  
James Kirby ◽  
Fengyan Shi ◽  
Stephan Grilli

Meteorological tsunamis, also called meteo-tsunamis, are significant ocean surface waves generated by atmospheric forcing. The waves typically result from energy transfer from atmosphere to ocean through the Proudman resonance phenomena, where translation speed of the storm system in the atmosphere coincides with the free wave speed of long surface waves. These tsunami-like waves can be hazardous, either through direct inundation of shorelines or through generation of harbor oscillations and other disruptions to maritime activities. The wide continental shelf bathymetry of the United States (US) East Coast provides a long potential fetch length for the resonant generation process, making the region particularly susceptible to meteo-tsunamis. In this study, we carry out a probabilistic analysis of potential meteo-tsunami hazard on the US East Coast, extending the earlier work of Geist et al. (2014) to include a wider range of storm conditions and additional response types including coastally-trapped edge waves. The work, carried out under the auspices of the National Tsunami Hazard Mitigation Program (NTHMP), extends the previous efforts of Geist et al. to include a representation of inundation and maritime hazards in at-risk areas. The work is conducted using the fully nonlinear Boussinesq wave model FUNWAVE-TVD (Shi et al., 2012), extended to include atmospheric pressure and wind forcing.


2014 ◽  
Vol 76 (2) ◽  
pp. 705-746 ◽  
Author(s):  
Stephan T. Grilli ◽  
Christopher O’Reilly ◽  
Jeffrey C. Harris ◽  
Tayebeh Tajalli Bakhsh ◽  
Babak Tehranirad ◽  
...  

2021 ◽  
Author(s):  
Stephan Toni Grilli ◽  
Maryam Mohammadpour ◽  
Lauren Schambach ◽  
Annette Grilli

Abstract We model the coastal hazard caused by tsunamis along the US East Coast (USEC) for far-field coseismic sources originated in the A\c{c}ores Convergence Zone (ACZ), and the Puerto Rico Trench (PRT)/Caribbean Arc area. In earlier work, similar modeling was performed for probable maximum tsunamis (PMTs) resulting from coseismic, submarine mass failure and volcanic collapse sources in the Atlantic Ocean basin, based on which tsunami inundation maps were developed in high hazard areas of the USEC. Here, in preparation for a future Probabilistic Tsunami Hazard Analysis (PTHA), we model a collection of 18 coseismic sources with magnitude ranging from M8 to M9 and return periods estimated in the 100-2,000 year range. Most sources are hypothetical, based on the seismo-tectonic data known for the considered areas. However, the largest sources from the ACZ, which includes the region of the Madeira Tore Rise, are parameterized as repeats of the 1755 M8.6-9 (Lisbon) earthquake and tsunami using information from many studies published on this event, which is believed to have occurred east of the MTR. Many other large events have been documented to have occurred in this area in the past 2,000 years. There have also been many large historical coseismic tsunamis in and near the Puerto Rico Trench (PRT) area, triggered by earthquakes with the largest in the past 225 years having an estimated M8.1 magnitude. In this area, coseismic sources are parameterized based on information from a 2019 USGS Powell Center expert, attended by the first author, and a collection of SIFT subfaults for the area (Gica et al., 2008). For each source, regional tsunami hazard assessment is performed along the USEC at a coarse 450 m resolution by simulating tsunami propagation to the USEC with FUNWAVE-TVD (a nonlinear and dispersive (2D) Boussinesq model), in nested grids. Tsunami coastal hazard is represented by four metrics, computed along the 5 m isobath, which quantify inundation, navigation, structural, and evacuation hazards: (1) maximum surface elevation; (2) maximum current velocity; (3) maximum momentum force; and (4) tsunami arrival time. Overall, the first three factors are larger, the larger the source magnitude, and their alongshore variation shows similar patterns of higher and lower values, due to bathymetric control from the wide USEC shelf, causing similar wave refraction patterns of focusing/defocusing for each tsunami. The fourth factor differs mostly between sources from each area (ACZ and PRT), but less so among sources from the same area; its inverse is used as a measure of increased hazard associated with short warning/evacuation times. Finally, a new tsunami intensity index (TII) is computed, that attaches a score to each metric within 5 hazard intensity classes selected for each factor, reflecting low, medium low, medium, high and highest hazard, and is computed as a weighted average of these scores (weights can be selected to reinforce the effect of certain metrics). For each source, the TII provides an overall tsunami hazard intensity along the USEC coast that allows both a comparison among sources and a quantification of tsunami hazard as a function of the source return period. At the most impacted areas of the USEC (0.1 percentile), we find that tsunami hazard in the 100-500 year return period range is commensurate with that posed by category 3-5 tropical cyclones, taking into account the larger current velocities and forces caused by tsunami waves. Based on results of this work, high-resolution inundation PTHA maps will be developed in the future, similar to the PMT maps, in areas identified to have higher tsunami hazard, using more levels of nested grids, to achieve a 10-30 m resolution along the coast.


2011 ◽  
Vol 2 (3) ◽  
pp. 374-383 ◽  
Author(s):  
Fei Song ◽  
Jin Young Shin ◽  
Rafael Jusino‐Atresino ◽  
Yuan Gao
Keyword(s):  
The Us ◽  

Author(s):  
Вячеслав Константинович Гусяков ◽  
Владимир Андреевич Кихтенко ◽  
Леонид Борисович Чубаров ◽  
Юрий Иванович Шокин

В работе идет речь о реализации методики вероятностного цунамирайонирования побережья, известной под названием PTHA (Probabilistic Tsunami Hazard Assessment), для создания обзорных карт цунамиопасности дальневосточного побережья России. Обсуждаются методологические основы такого подхода, проблемы построения сейсмотектонических моделей основных цунамигенных зон, численные методики получения расчетных каталогов высот волн на побережье. Приведены примеры обзорных карт для различных повторяемостей, построенных с применением методики PTHA и представленных с помощью созданного веб-приложения WTMap. Упоминаются также некоторые проблемы применения методики PTHA, связанные как с недостаточностью данных наблюдений, так и со сложностью выполнения большого объема сценарного численного моделирования. The article describes the results of the implementation of the PTHA (Probabilistic Tsunami Hazard Assessment) methodology for creating the overview maps of tsunami hazard for the Far East coast of the Russian Federation. Such maps show the characteristics of the catastrophic impact of tsunami waves on the coast and the probability of their exceeding in a given period of time. The methodological basis of the PTHA approach to the assessment of tsunami hazard, the problems of constructing seismotectonic models of the main tsunamigenic zones, mathematical models and algorithms for calculating probability estimates of tsunami danger are discussed. The version of the PTHA methodology outlined in the article is implemented as a “WTmap” Web-application that has an access to the entire observational information related to coastal tsunami zoning and software packages used. The application allows to obtain the estimates of the expected tsunami heights and their recurrence estimates and to map them on specific parts of the Far Eastern coast of the Russian Federation. The obtained estimates can be quickly recalculated when replacing the observational catalogs with more complete and reliable ones, with the addition of new, previously absent events or the revision of their parameters, as well as the results of new scenario calculations. Examples of overview maps for various recurrence intervals, constructed using the PTHA methodology and presented using the “WTMap” application, are given. Some problems of using the PTHA methodology related to the lack of available observational data and to the complexity of performing a large amount of scenario simulations are also discussed.


Sign in / Sign up

Export Citation Format

Share Document