Groundwater, Radon Continuous Monitoring System ( α -scintillation Counting) for Natural Hazard Surveillance

2000 ◽  
Vol 157 (3) ◽  
pp. 407-433 ◽  
Author(s):  
G. Galli ◽  
C. Mancini
2012 ◽  
Vol 1 (2) ◽  
pp. 155-167 ◽  
Author(s):  
L. Girard ◽  
J. Beutel ◽  
S. Gruber ◽  
J. Hunziker ◽  
R. Lim ◽  
...  

Abstract. We present a custom acoustic emission (AE) monitoring system designed to perform long-term measurements on high-alpine rock walls. AE monitoring is a common technique for characterizing damage evolution in solid materials. The system is based on a two-channel AE sensor node (AE-node) integrated into a wireless sensor network (WSN) customized for operation in harsh environments. This wireless architecture offers flexibility in the deployment of AE-nodes at any position of the rock wall that needs to be monitored, within a range of a few hundred meters from a core station connected to the internet. The system achieves near real-time data delivery and allows the user to remotely control the AE detection threshold. In order to protect AE sensors and capture acoustic signals from specific depths of the rock wall, a special casing was developed. The monitoring system is completed by two probes that measure rock temperature and liquid water content, both probes being also integrated into the WSN. We report a first deployment of the monitoring system on a rock wall at Jungfraujoch, 3500 m a.s.l., Switzerland. While this first deployment of the monitoring system aims to support fundamental research on processes that damage rock under cold climate, the system could serve a number of other applications, including rock fall hazard surveillance or structural monitoring of concrete structures.


2001 ◽  
Author(s):  
John Donelson ◽  
Wayne M. Zavis ◽  
S. K. (John) Punwani ◽  
Monique Ferguson Stewart ◽  
Mark C. Edwards

Abstract Science Applications International Corporation (SAIC) and Wilcoxon Research have developed a real-time on-board condition monitoring system for freight trains. The Office of Research and Development of the Federal Railroad Administration funded the development of the system. The system monitors bearings, wheels, trucks and brakes on freight trains in order to detect equipment defects and derailments. The objectives of the system are to improve railroad safety and operation efficiency through continuous monitoring of mechanical components on freight trains.


2009 ◽  
Vol 46 (6) ◽  
pp. 45-48
Author(s):  
李树珉 Li Shumin ◽  
刘斌 Liu Bin ◽  
孙长库 Sun Changku ◽  
赵玉梅 Zhao Yumei

Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3758
Author(s):  
Hsing-Cheng Yu ◽  
Ming-Yang Tsai ◽  
Yuan-Chih Tsai ◽  
Jhih-Jyun You ◽  
Chun-Lin Cheng ◽  
...  

Recently, environmental pollution resulting from industrial waste has been emerging in an endless stream. The industrial waste contains chemical materials, heavy metal ions, and other toxic materials. Once the industrial waste is discharged without standards, it might lead to water or environmental pollution. Hence, it has become more important to provide evidence-based water quality monitoring. The use of a multifunctional miniaturized water quality monitoring system (WQMS), that contains continuous monitoring, water quality monitoring, and wireless communication applications, simultaneously, is infrequent. Thus, electrodes integrated with polydimethylsiloxane flow channels were presented in this study to be a compound sensor, and the sensor can be adopted concurrently to measure temperature, pH, electrical conductivity, and copper ion concentration, whose sensitivities are determined as 0.0193 °C/mV, −0.0642 pH/mV, 1.1008 mS/V·cm (from 0 mS/cm to 2 mS/cm) and 1.1975 mS/V·cm (from 2 mS/cm to 5.07 mS/cm), and 0.0111 ppm/mV, respectively. A LoRa shield connected into the system could provide support as a node of long range wide area network (LoRaWAN) for wireless communication application. As mentioned above, the sensors, LoRa, and circuit have been integrated in this study to a continuous monitoring system, WQMS. The advantages of the multifunctional miniaturized WQMS are low cost, small size, easy maintenance, continuous sampling and long-term monitoring for many days. Every tested period is 180 min, and the measured rate is 5 times per 20 min. The feedback signals of the miniaturized WQMS and measured values of the instrument were obtained to compare the difference. In the measured results at three different place-to-place locations the errors of electrical conductivity are 0.051 mS/cm, 0.106 mS/cm, and 0.092 mS/cm, respectively. The errors of pH are 0.68, 0.87, and 0.56, respectively. The errors of temperature are 0.311 °C, 0.252 °C, and 0.304 °C, respectively. The errors of copper ion concentration are 0.051 ppm, 0.058 ppm, 0.050 ppm, respectively.


2020 ◽  
Vol 2 (10) ◽  
Author(s):  
Khushboo Qayyum ◽  
Idrees Zaman ◽  
Anna Förster

Abstract In oceans, fish usually live in an environment that is best suited for their growth. When these fish are introduced into man-made environment, e.g. in mariculture and aquaculture set-ups, the physical parameters might stray from their ideal values, resulting in improper growth and undesired outcomes. Hence, to prevent these undesirable outcomes, continuous monitoring of the physical parameters of the water such as pH, temperature and dissolved oxygen is required. In this work, we present a system called H2O sense, which continuously monitors the physical parameters of the water in tanks and alerts the user in case the values deviate from ideal. We use only low-power, low-cost hardware and open-source development tools, which makes the system easily applicable to various settings. The deployment of our system in the Maritime Laboratory of the University of Namibia shows its efficacy. Furthermore, we evaluate in detail the performance of our system and discuss its applicability in similar challenged environments.


2015 ◽  
Vol 772 ◽  
pp. 597-602
Author(s):  
Gheorghe Daniel Voinea ◽  
Silviu Butnariu

This paper presents the design of an innovative system for the diagnosis and treatment of spine disorders, in particular, the scoliosis. The product consists in a mechatronic device that is able to measure in real time the instantaneous position of the human spine, facilitating a precise diagnosis as well as continuous monitoring for prevention and/or treatment of spine disorders.


Sign in / Sign up

Export Citation Format

Share Document