scholarly journals Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow

2012 ◽  
Vol 20 (3) ◽  
pp. 523-537 ◽  
Author(s):  
Gianluca Crippa ◽  
Magali Lécureux-Mercier
2021 ◽  
Vol 29 (5) ◽  
pp. 1157-1182
Author(s):  
Laiyuan Gao ◽  
Shengliang Pan ◽  
Ke Shi
Keyword(s):  

Author(s):  
Jiakuan Xu

Based on the database from linear stability theory (LST) analysis, a local amplification factor transport equation for stationary crossflow (CF) waves in low-speed boundary layers was developed in 2019. In this paper, the authors try to extend this transport equation to compressible boundary layers based on local flow variables. The similarity equations for compressible boundary layers are introduced to build the function relations between non-local variables and local flow parameters. Then, compressibility corrections are taken into account to modify the source term of the transport equation. Through verifications of different sweep angles, Reynolds numbers, angles of attack, Mach numbers, and different cross-section geometric shapes, the rationality and correctness of the new transport equation established in this paper are illustrated.


2012 ◽  
Vol 38 ◽  
pp. 409-428 ◽  
Author(s):  
Magali Lécureux-Mercier

Author(s):  
Ioana Ciotir ◽  
Rim Fayad ◽  
Nicolas Forcadel ◽  
Antoine Tonnoir

In this work we propose a non-local Hamilton-Jacobi model for traffic flow and we prove the existence and uniqueness of the solution of this model. This model is justified as the limit of a rescaled microscopic model. We also propose a numerical scheme and we prove an estimate error between the continuous solution of this problem and the numerical one. Finally, we provide some numerical illustrations.


Author(s):  
Obidjon Kh. Abdullaev

This work is devoted to prove the existence and uniqueness of solution of BVP with non-local assumptions on the boundary and integral gluing conditions for the parabolic-hyperbolic type equation involving Caputo derivatives. Using the method of integral energy, the uniqueness of solution have been proved. Existence of solution was proved by the method of integral equations


Filomat ◽  
2018 ◽  
Vol 32 (19) ◽  
pp. 6615-6626
Author(s):  
B. Radhakrishnan ◽  
M. Tamilarasi ◽  
P. Anukokila

In this paper, authors investigated the existence and uniqueness of random impulsive semilinear integrodifferential evolution equations with non-local conditions in Hilbert spaces. Also the stability results for the same evolution equation has been studied. The results are derived by using the semigroup theory and fixed point approach. An application is provided to illustrate the theory.


Author(s):  
М.М. Сагдуллаева

В работе рассмотрена нелокальная задача с интегральным условием для нагруженного уравнения теплопроводности, где нагруженное слагаемое представляет собой производную второго порядка от неизвестной функции в начале координат. Доказано существование и единственность регулярного решения. С помощью функции Грина и тепловых потенциалов доказанао существование регулярного решения исследуемой задачи. Доказательство основано на редукции поставленной задачи к интегральному уравнению Вольтерра второго рода со слабой особенностью. Из разрешимости полученных интегральных уравнений Вольтерра следует существование единственного решения поставленной задачи. In this paper, we consider a non-local problem with the integral condition for the loaded heat equation, where the loaded term is a derivative of the second order from an unknown function at the origin. The existence and uniqueness of a regular solution is proven. Using the Green’s functions and thermal potentials, the existence of a regular solution to this problem is proved. The proof is based on the reduction of the formulated problem to the second kind Volterra integral equation with a weak singularity. The solvability of the obtained Volterra integral equations implies the existence of a unique solution to the problem.


Sign in / Sign up

Export Citation Format

Share Document