Dynamic protozoan abundance of Coptotermes kings and queens during the transition from biparental to alloparental care

2021 ◽  
Vol 68 (1) ◽  
pp. 33-40
Author(s):  
J. F. Velenovsky ◽  
G. H. Gile ◽  
N.-Y. Su ◽  
T. Chouvenc
Keyword(s):  
Author(s):  
Jill R. Brown ◽  
Maria Rosario T. de Guzman ◽  
Kani Rubango
Keyword(s):  

2008 ◽  
Vol 4 (6) ◽  
pp. 606-609 ◽  
Author(s):  
Dik Heg

Suppression by dominants of female subordinate reproduction has been found in many vertebrate social groups, but has rarely been shown experimentally. Here experimental evidence is provided for reproductive suppression in the group-living Lake Tanganyika cichlid Neolamprologus pulcher . Within groups of three unrelated females, suppression was due to medium- and small-sized females laying less frequently compared with large females, and compared with medium females in control pairs. Clutch size and average egg mass of all females depended on body size, but not on rank. In a second step, a large female was removed from the group and a very small female was added to keep the group size constant. The medium females immediately seized the dominant breeding position in the group and started to reproduce as frequently as control pairs, whereas clutch size and egg mass did not change. These results show that female subordinate cichlids are reproductively capable, but apparently suppressed with respect to egg laying. Nevertheless, some reproduction is tolerated, possibly to ensure continued alloparental care by subordinate females.


2017 ◽  
Vol 4 (1) ◽  
pp. 160897 ◽  
Author(s):  
Dieter Lukas ◽  
Tim Clutton-Brock

Cooperative breeding systems, in which non-breeding individuals provide care for the offspring of dominant group members, occur in less than 1% of mammals and are associated with social monogamy and the production of multiple offspring per birth (polytocy). Here, we show that the distribution of alloparental care by non-breeding subordinates is associated with habitats where annual rainfall is low. A possible reason for this association is that the females of species found in arid environments are usually polytocous and this may have facilitated the evolution of alloparental care.


2020 ◽  
Vol 31 (6) ◽  
pp. 1369-1378 ◽  
Author(s):  
Dario Josi ◽  
Annika Freudiger ◽  
Michael Taborsky ◽  
Joachim G Frommen

Abstract In cooperatively breeding species, nonbreeding individuals provide alloparental care and help in territory maintenance and defense. Antipredator behaviors of subordinates can enhance offspring survival, which may provide direct and indirect fitness benefits to all group members. Helping abilities and involved costs and benefits, risks, and outside options (e.g., breeding independently) usually diverge between group members, which calls for status-specific differentiated behavioral responses. Such role differentiation within groups may generate task-specific division of labor, as exemplified by eusocial animals. In vertebrates, little is known about such task differentiation among group members. We show how breeders and helpers of the cooperatively breeding cichlid Neolamprologus savoryi partition predator defense depending on intruder type and the presence of dependent young. In the field, we experimentally simulated intrusions by different fish species posing a risk either specifically to eggs, young, or adults. We used intrusions by harmless algae eaters as a control. Breeders defended most when dependent young were present, while helper investment hinged mainly on their body size and on the potential threat posed by the respective intruders. Breeders and helpers partitioned defense tasks primarily when dependent young were exposed to immediate risk, with breeders investing most in antipredator defense, while helpers increased guarding and care in the breeding chamber. Breeders’ defense likely benefits helpers as well, as it was especially enhanced in the treatment where helpers were also at risk. These findings illustrate that in a highly social fish different group members exhibit fine-tuned behavioral responses in dependence of ecological and reproductive parameter variation.


2020 ◽  
Vol 7 (2) ◽  
pp. 191808 ◽  
Author(s):  
Jan Naef ◽  
Michael Taborsky

Coercion is an important but underrated component in the evolution of cooperative behaviour. According to the pay-to-stay hypothesis of cooperative breeding, subordinates trade alloparental care for the concession to stay in the group. Punishment of idle subordinates is a key prediction of this hypothesis, which has received some experimental scrutiny. However, previous studies neither allowed separating between punishment and effects of disruption of social dynamics, nor did they differentiate between different helping behaviours that may reflect either mutualistic or reciprocal interaction dynamics. In the cooperative breeder Neolamprologus pulcher , we experimentally engineered the ability of subordinates to contribute to alloparental care by manipulating two different helping behaviours independently from one another in a full factorial design. We recorded the treatment effects on breeder aggression, subordinate helping efforts and submissive displays. We found two divergent regulatory mechanisms of cooperation, dependent on behavioural function. Experimental impediment of territory maintenance of subordinates triggered punishment by dominants, whereas prevented defence against egg predators released a compensatory response of subordinates without any enforcement, suggesting pre-emptive appeasement. These effects occurred independently of one another. Apparently, in the complex negotiation process among members of cooperative groups, behaviours fulfilling different functions may be regulated by divergent interaction mechanisms.


2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Markus Zöttl ◽  
Dik Heg ◽  
Noémie Chervet ◽  
Michael Taborsky
Keyword(s):  

2014 ◽  
Vol 369 (1642) ◽  
pp. 20130565 ◽  
Author(s):  
Ben J. Hatchwell ◽  
Philippa R. Gullett ◽  
Mark J. Adams

Inclusive fitness theory provides the conceptual framework for our current understanding of social evolution, and empirical studies suggest that kin selection is a critical process in the evolution of animal sociality. A key prediction of inclusive fitness theory is that altruistic behaviour evolves when the costs incurred by an altruist ( c ) are outweighed by the benefit to the recipient ( b ), weighted by the relatedness of altruist to recipient ( r ), i.e. Hamilton's rule rb > c . Despite its central importance in social evolution theory, there have been relatively few empirical tests of Hamilton's rule, and hardly any among cooperatively breeding vertebrates, leading some authors to question its utility. Here, we use data from a long-term study of cooperatively breeding long-tailed tits Aegithalos caudatus to examine whether helping behaviour satisfies Hamilton's condition for the evolution of altruism. We show that helpers are altruistic because they incur survival costs through the provision of alloparental care for offspring. However, they also accrue substantial benefits through increased survival of related breeders and offspring, and despite the low average relatedness of helpers to recipients, these benefits of helping outweigh the costs incurred. We conclude that Hamilton's rule for the evolution of altruistic helping behaviour is satisfied in this species.


2018 ◽  
Vol 373 (1754) ◽  
pp. 20170260 ◽  
Author(s):  
Melissa A. L. V. Reggente ◽  
Elena Papale ◽  
Niall McGinty ◽  
Lavinia Eddy ◽  
Giuseppe Andrea de Lucia ◽  
...  

Some aquatic mammals appear to care for their dead, whereas others abandon their live offspring when conditions are unfavourable. This incredible variety in behaviours suggests the importance of comparing and contrasting mechanisms driving death-related behaviours among these species. We reviewed 106 cases of aquatic mammals (81 cetaceans and 25 non-cetaceans) reacting to a death event, and extrapolated ‘participant’ ( age class , sex , relationship and decomposition ) and ‘social’ characteristics ( escorting , calf dependence , alloparental care , herding and dispersal patterns ) from published and unpublished literature. A multiple correspondence analysis (MCA) was performed to explore the relationships between these characteristics and death-related behaviours, with species clustered based on MCA scores. Results showed that both cetaceans and non-cetaceans react to death but in different ways. Non-cetaceans, characterized by a short maternal investment, were observed to protect the dead (defending it from external attacks), while cetaceans spent much longer with their offspring and display carrying (hauling, spinning, mouthing with the carcass and diving with it) and breathing-related (lifting and sinking the carcass) activities with the dead generally in association with other conspecifics. Our work emphasizes the need of increased documentation of death-related cases around the world to improve our understanding of aquatic mammals and their responses to death. This article is part of the theme issue ‘Evolutionary thanatology: impacts of the dead on the living in humans and other animals’.


Author(s):  
Caleigh Guoynes ◽  
Catherine Marler

How hormones and neuromodulators initiate and maintain paternal care is important for understanding the evolution of paternal care and the plasticity of the social brain. The focus here is on mammalian paternal behavior in rodents, non-human primates and humans. Only 5% of mammalian species express paternal care, and many of those species likely evolved the behavior convergently. This means that there is a high degree of variability in how hormones and neuromodulators shape paternal care across species. Important factors to consider include social experience (alloparental care, mating, pair bonding, raising a previous litter), types of care expressed (offspring protection, providing and sharing food, socio-cognitive development), and timing of hormonal changes (after mating, during gestation, after contact with offspring). The presence or absence of infanticide towards offspring prior to mating may also be a contributor, especially in rodents. Taking these important factors into account, we have found some general trends across species. (1) Testosterone and progesterone tend to be negatively correlated with paternal care but promote offspring defense in some species. The most evidence for a positive association between paternal care and testosterone have appeared in rodents. (2) Prolactin, oxytocin, corticosterone, and cortisol tend to be positively correlated. (3) Estradiol and vasopressin are likely nuclei specific—with some areas having a positive correlation with paternal care and others having a negative association. Some mechanisms appear to be coopted from females and others appear to have evolved independently. Overall, the neuroendocrine system seems especially important for mediating environmental influences on paternal behavior.


Sign in / Sign up

Export Citation Format

Share Document