Chromosome substitutions of Triticum timopheevii in common wheat and some observations on the evolution of polyploid wheat species

1996 ◽  
Vol 93 (8) ◽  
pp. 1291-1298 ◽  
Author(s):  
G. L. Brown-Guedira ◽  
E. D. Badaeva ◽  
B. S. Gill ◽  
T. S. Cox
2002 ◽  
Vol 50 (4) ◽  
pp. 463-477 ◽  
Author(s):  
K Järve ◽  
I. Jakobson ◽  
T. Enno

Timopheevii wheats are discussed as donors for improving the disease resistance of common wheat. Attention is paid to the comparison of the morphological and chromosomal characteristics of Triticum timopheevii and T. militinae, their crossability with T. aestivum and their response to fungal diseases. The possible origin of T. militinae from an introgressive hybridization between T. timopheevii and an unknown species is discussed. Major genes for resistance to various fungal diseases, transferred to common wheat from T. timopheevii, are listed.


2020 ◽  
Vol 20 (S1) ◽  
Author(s):  
Dmitry Miroshnichenko ◽  
Anna Klementyeva ◽  
Alexander Pushin ◽  
Sergey Dolgov

Abstract Background The ability to engineer cereal crops by gene transfer technology is a powerful and informative tool for discovering and studying functions of genes controlling environmental adaptability and nutritional value. Tetraploid wheat species such as emmer wheat and Timopheevi wheat are the oldest cereal crops cultivated in various world areas long before the Christian era. Nowadays, these hulled wheat species are gaining new interest as donors for gene pools responsible for the improved grain yield and quality, tolerance for abiotic and biotic stress, resistance to pests and disease. The establishing of efficient gene transfer techniques for emmer and Timopheevi wheat may help in creation of modern polyploid wheat varieties. Results In the present study, we describe a robust protocol for the production of fertile transgenic plants of cultivated emmer wheat (Russian cv. ‘Runo’) using a biolistic delivery of a plasmid encoding the gene of green fluorescent protein (GFP) and an herbicide resistance gene (BAR). Both the origin of target tissues (mature or immature embryos) and the type of morphogenic calli (white or translucent) influenced the efficiency of stable transgenic plant production in emmer wheat. The bombardment of nodular white compact calluses is a major factor allowed to achieve the highest transformation efficiency of emmer wheat (on average, 12.9%) confirmed by fluorescence, PCR, and Southern blot. In the absence of donor plants for isolation of immature embryos, mature embryo-derived calluses could be used as alternative tissues for recovering transgenic emmer plants with a frequency of 2.1%. The biolistic procedure based on the bombardment of immature embryo-derived calluses was also successful for the generation of transgenic Triticum timopheevii wheat plants (transformation efficiency of 0.5%). Most of the primary events transmitted the transgene expression to the sexual progeny. Conclusion The procedures described here can be further used to study the functional biology and contribute to the agronomic improvement of wheat. We also recommend involving in such research the Russian emmer wheat cv. ‘Runo’, which demonstrates a high capacity for biolistic-mediated transformation, exceeding the previously reported values for different genotypes of polyploid wheat.


Author(s):  
Shisheng Chen ◽  
Joshua Hegarty ◽  
Tao Shen ◽  
Lei Hua ◽  
Hongna Li ◽  
...  

AbstractKey messageThe stripe rust resistance geneYr34 was transferred to polyploid wheat chromosome 5AL from T. monococcumand has been used for over two centuries.Wheat stripe (or yellow) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is currently among the most damaging fungal diseases of wheat worldwide. In this study, we report that the stripe rust resistance gene Yr34 (synonym Yr48) is located within a distal segment of the cultivated Triticum monococcum subsp. monococcum chromosome 5AmL translocated to chromosome 5AL in polyploid wheat. The diploid wheat species Triticum monococcum (genome AmAm) is closely related to T. urartu (donor of the A genome to polyploid wheat) and has good levels of resistance against the stripe rust pathogen. When present in hexaploid wheat, the T. monococcum Yr34 resistance gene confers a moderate level of resistance against virulent Pst races present in California and the virulent Chinese race CYR34. In a survey of 1,442 common wheat genotypes, we identified 5AmL translocations of fourteen different lengths in 17.5% of the accessions, with higher frequencies in Europe than in other continents. The old European wheat variety “Mediterranean” was identified as a putative source of this translocation, suggesting that Yr34 has been used for over 200 years. Finally, we designed diagnostic CAPS and sequenced-based markers that will be useful to accelerate the deployment of Yr34 in wheat breeding programs to improve resistance to this devastating pathogen.


Genetics ◽  
1998 ◽  
Vol 150 (3) ◽  
pp. 1199-1208 ◽  
Author(s):  
Juan M Vega ◽  
Moshe Feldman

Abstract The analysis of the pattern of isochromosome pairing allows one to distinguish factors affecting presynaptic alignment of homologous chromosomes from those affecting synapsis and crossing-over. Because the two homologous arms in an isochromosome are invariably associated by a common centromere, the suppression of pairing between these arms (intrachromosome pairing) would indicate that synaptic or postsynaptic events were impaired. In contrast, the suppression of pairing between an isochromosome and its homologous chromosome (interchromosome pairing), without affecting intrachromosome pairing, would suggest that homologous presynaptic alignment was impaired. We used such an isochromosome system to determine which of the processes associated with chromosome pairing was affected by the Ph1 gene of common wheat—the main gene that restricts pairing to homologues. Ph1 reduced the frequency of interchromosome pairing without affecting intrachromosome pairing. In contrast, intrachromosome pairing was strongly reduced in the absence of the synaptic gene Syn-B1. Premeiotic colchicine treatment, which drastically decreased pairing of conventional chromosomes, reduced interchromosome but not intrachromosome pairing. The results support the hypothesis that premeiotic alignment is a necessary stage for the regularity of meiotic pairing and that Ph1 relaxes this alignment. We suggest that Ph1 acts on premeiotic alignment of homologues and homeologues as a means of ensuring diploid-like meiotic behavior in polyploid wheat.


Foods ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 409 ◽  
Author(s):  
Geisslitz ◽  
Longin ◽  
Scherf ◽  
Koehler

The spectrophotometric Bradford assay was adapted for the analysis of gluten protein contents (gliadins and glutenins) of spelt, durum wheat, emmer and einkorn. The assay was applied to a set of 300 samples, including 15 cultivars each of common wheat, spelt, durum wheat, emmer and einkorn cultivated at four locations in Germany in the same year. The total protein content was equally influenced by location and wheat species, however, gliadin, glutenin and gluten contents were influenced more strongly by wheat species than location. Einkorn, emmer and spelt had higher protein and gluten contents than common wheat at all four locations. However, common wheat had higher glutenin contents than einkorn, emmer and spelt resulting in increasing ratios of gliadins to glutenins from common wheat (< 3.8) to spelt, emmer and einkorn (up to 12.1). With the knowledge that glutenin contents are suitable predictors for high baking volume, cultivars of einkorn, emmer and spelt with good predicted baking performance were identified. Finally, spelt, emmer and einkorn were found to have a higher nitrogen partial factor productivity than common and durum wheat making them promising crops for a more sustainable agriculture.


Genome ◽  
2000 ◽  
Vol 43 (2) ◽  
pp. 377-381 ◽  
Author(s):  
K. Järve ◽  
H.O. Peusha ◽  
J. Tsymbalova ◽  
S. Tamm ◽  
K.M. Devos ◽  
...  

2009 ◽  
Vol 119 (8) ◽  
pp. 1489-1495 ◽  
Author(s):  
Judd J. Maxwell ◽  
Jeanette H. Lyerly ◽  
Christina Cowger ◽  
David Marshall ◽  
Gina Brown-Guedira ◽  
...  

1956 ◽  
Vol 34 (4) ◽  
pp. 629-640 ◽  
Author(s):  
John Unrau ◽  
Clayton Person ◽  
John Kuspira

The procedures involved in the various phases of chromosome substitution in common wheat are briefly outlined and explained. Complications encountered with reciprocal translocations are clarified. The following subjects are discussed: development of chromosome-deficient series in other varieties, transfer of single chromosomes from donor varieties to chromosome-deficient lines to develop substitution lines, alien substitutions, and combination of two chromosome substitutions into a single line. There is a brief discussion of the value of the chromosome substitution method especially in the study of gene dosage and interaction as affecting certain characters.


Sign in / Sign up

Export Citation Format

Share Document