Tetraploid wheat species Triticum timopheevii and Triticum militinae in common wheat improvement

2002 ◽  
Vol 50 (4) ◽  
pp. 463-477 ◽  
Author(s):  
K Järve ◽  
I. Jakobson ◽  
T. Enno

Timopheevii wheats are discussed as donors for improving the disease resistance of common wheat. Attention is paid to the comparison of the morphological and chromosomal characteristics of Triticum timopheevii and T. militinae, their crossability with T. aestivum and their response to fungal diseases. The possible origin of T. militinae from an introgressive hybridization between T. timopheevii and an unknown species is discussed. Major genes for resistance to various fungal diseases, transferred to common wheat from T. timopheevii, are listed.

2021 ◽  
Vol 117 (1) ◽  
pp. 1
Author(s):  
Eleni SHIFERAW

<p>Gliadins from 25 accessions represented by 350 individual seed samples were analysed by acid-polyacrylamide gel electrophoresis (A-PAGE) with the objective of identifying gliadin band patterns and examine the extent of diversity in <em>Triticum polonicum </em>L. collections from Ethiopia. Seventy polymorphic bands and 68 different patterns were identified. Eighteen different mobility bands and 16 patterns were identified in <em>ω</em>-gliadin region, 22 bands and 20 patterns in <em>γ-</em>gliadin region, 12 bands and 22 patterns in <em>β-</em>gliadin region and 18 bands and 10 patterns in <em>α</em>-gliadin region. The average genetic diversity calculated from the data of the four gliadin zones of the analysed samples was 0.15. The γ region have the highest diversity (H = 0.193), followed by ω regions (H = 0.177) and β region (H = 0.168) and the lowest diversity was observed in α region (H = 0.127). Cluster analysis based on genetic distances resulted in grouping of the analysed accessions in to seven main groups. Though the level of diversity was relatively lower than other tetraploid wheat species from Ethiopia, the findings are indicative of the existence of variation in the collections which can be exploited for wheat improvement.</p>


2015 ◽  
Vol 13 (1) ◽  
pp. 16 ◽  
Author(s):  
Ol’ga Aleksandrovna Orlovskaya ◽  
Irina Nikolaevna Leonova ◽  
Elena Artemovna Salina ◽  
Lyubov’ Vladimirovna Khotyleva

Plant Disease ◽  
2020 ◽  
Vol 104 (1) ◽  
pp. 260-268 ◽  
Author(s):  
Pengtao Ma ◽  
Guohao Han ◽  
Qi Zheng ◽  
Shiyu Liu ◽  
Fangpu Han ◽  
...  

Rye (Secale cereale L.) is an important gene donor for wheat improvement because of its many valuable traits, especially disease resistance. Development of novel wheat-rye translocations with disease resistance can contribute to transferring resistance into common wheat. In a previous study, a wheat-rye T4BL·4RL and T7AS·4RS translocation line (WR41-1) was developed by distant hybridization, and it was speculated that its resistance to powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), was derived from rye based on pedigree analysis. To make accurate use of chromosome 4R in wheat improvement, a set of new 4R translocations involving different arm translocations (e.g., 4RS monosomic, 4RL monosomic, 4RL disomic, 4RS monosomic plus 4RL monosomic, 4RS monosomic plus 4RL disomic, and 4RS disomic plus 4RL disomic translocations) was developed from crosses with common wheat. Those translocations were characterized by genomic in situ hybridization and expressed sequence tag simple sequence repeat marker analysis. To confirm the source of powdery mildew resistance, the translocation plants were tested against Bgt isolate E09. The results indicated that all translocations with 4RL were resistant at all tested growth stages, whereas those with only 4RS translocation or no alien translocation were susceptible. This further indicated that the powdery mildew resistance of WR41-1 was derived from the alien chromosome arm 4RL. To effectively use 4RL resistance in wheat improvement, two competitive allele-specific PCR markers specific for chromosome arm 4RL were developed to detect the alien chromosome in the wheat genome. These new translocation lines with diagnostic markers can efficiently serve as important bridges for wheat improvement.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 338
Author(s):  
Moran Nave ◽  
Mihriban Taş ◽  
John Raupp ◽  
Vijay K. Tiwari ◽  
Hakan Ozkan ◽  
...  

Triticum turgidum and T. timopheevii are two tetraploid wheat species sharing T. urartu as a common ancestor, and domesticated accessions from both of these allopolyploids exhibit nonbrittle rachis (i.e., nonshattering spikes). We previously described the loss-of-function mutations in the Brittle Rachis 1 genes BTR1-A and BTR1-B in the A and B subgenomes, respectively, that are responsible for this most visible domestication trait in T. turgidum. Resequencing of a large panel of wild and domesticated T. turgidum accessions subsequently led to the identification of the two progenitor haplotypes of the btr1-A and btr1-B domesticated alleles. Here, we extended the haplotype analysis to other T. turgidum subspecies and to the BTR1 homologues in the related T. timopheevii species. Our results showed that all the domesticated wheat subspecies within T. turgidum share common BTR1-A and BTR1-B haplotypes, confirming their common origin. In T. timopheevii, however, we identified a novel loss-of-function btr1-A allele underlying a partially brittle spike phenotype. This novel recessive allele appeared fixed within the pool of domesticated Timopheev’s wheat but was also carried by one wild timopheevii accession exhibiting partial brittleness. The promoter region for BTR1-B could not be amplified in any T. timopheevii accessions with any T. turgidum primer combination, exemplifying the gene-level distance between the two species. Altogether, our results support the concept of independent domestication processes for the two polyploid, wheat-related species.


2016 ◽  
Vol 106 (4) ◽  
pp. 380-385 ◽  
Author(s):  
J. A. Kolmer ◽  
M. A. Acevedo

Collections of Puccinia triticina, the wheat leaf rust fungus, were obtained from tetraploid and hexaploid wheat in the central highlands of Ethiopia, and a smaller number from Kenya, from 2011 to 2013, in order to determine the genetic diversity of this wheat pathogen in a center of host diversity. Single-uredinial isolates were derived and tested for virulence phenotype to 20 lines of Thatcher wheat that differ for single leaf rust resistance genes and for molecular genotypes with 10 simple sequence repeat (SSR) primers. Nine virulence phenotypes were described among the 193 isolates tested for virulence. Phenotype BBBQJ, found only in Ethiopia, was predominantly collected from tetraploid wheat. Phenotype EEEEE, also found only in Ethiopia, was exclusively collected from tetraploid wheat and was avirulent to the susceptible hexaploid wheat ‘Thatcher’. Phenotypes MBDSS and MCDSS, found in both Ethiopia and Kenya, were predominantly collected from common wheat. Phenotypes CCMSS, CCPSS, and CBMSS were found in Ethiopia from common wheat at low frequency. Phenotypes TCBSS and TCBSQ were found on durum wheat and common wheat in Kenya. Four groups of distinct SSR genotypes were described among the 48 isolates genotyped. Isolates with phenotypes BBBQJ and EEEEE were in two distinct SSR groups, and isolates with phenotypes MBDSS and MCDSS were in a third group. Isolates with CCMSS, CCPSS, CBMSS, TCBSS, and TCBSQ phenotypes were in a fourth SSR genotype group. The diverse host environment of Ethiopia has selected and maintained a genetically divergent population of P. triticina.


2020 ◽  
Vol 181 (3) ◽  
pp. 81-90
Author(s):  
A. K. Zatybekov ◽  
Y. T. Turuspekov ◽  
B. N. Doszhanova ◽  
S. I. Abugalieva

Background. Soybean (Glycine max (L.) Merr.) gradually becomes one of the leading legume crops in Kazakhstan. The area under soybeans in the country has been increasing annually and requires the development of adapted cultivars with a higher yield, improved quality characters, and resistance to emerging fungal diseases. The enlargement of the crop’s gene pool also suggests the need to study and document local soybean accessions to meet the standards of the available world soybean collection by using reliable and informative types of DNA markers.Materials and methods. In this study, the soybean collection consisting of 288 accessions from different countries, including 36 cultivars and promising lines from Kazakhstan, was studied. The molecular genetic analysis was performed using nine polymorphic SSR (simple sequence repeats) markers, seven of which (Satt244, Satt565, Satt038, Satt309, Satt371, Satt570 and Sat_308) were associated with resistance to three main fungal diseases of soybean – frogeye leaf spot, fusarium root rot, and purple seed stain.Results. The average PIC (polymorphism information content) value of the analyzed SSR markers constituted 0.66 ± 0.07, confirming their highlevel polymorphism. The principal coordinate analysis suggested that the local accessions were genetically most close to the accessions from East Asia. As the collection showed a robust resistance to three studied fungal diseases in Almaty Region during 2018–2019, the distribution of the studied SSR markers in the population was not significantly associated with resistance to the analyzed diseases under field conditions.Conclusion. SSR genotyping of the soybean collection helped to identify accessions that potentially possess resistance-associated alleles of fungal disease resistance genes. The data obtained can be further used for the development of DNA documentation and the breeding the promising cultivars and lines of soybean. 


Sign in / Sign up

Export Citation Format

Share Document