Sulfides, native metals, and associated trace minerals of the Skaergaard intrusion, Greenland: evidence for late hydrothermal fluids

2019 ◽  
Vol 55 (6) ◽  
pp. 1197-1214 ◽  
Author(s):  
Ben Wernette ◽  
Peishu Li ◽  
Alan Boudreau
1970 ◽  
Vol 30 (2) ◽  
pp. 297-302 ◽  
Author(s):  
J. L. Clark ◽  
W. H. Pfander ◽  
G. B. Thompson

Author(s):  
Troels F.D. Nielsen ◽  
Henriette Hansen ◽  
C. Kent Brooks ◽  
Charles E. Lesher

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Nielsen, T. F., Hansen, H., Brooks, C. K., & Lesher, C. E. (2001). The East Greenland continental margin, the Prinsen af Wales Bjerge and new Skaergaard intrusion initiatives. Geology of Greenland Survey Bulletin, 189, 83-98. https://doi.org/10.34194/ggub.v189.5162 _______________ The rifted volcanic margin of East Greenland has remained a major area for field studies and the development of models for the dynamics of plume-related continental break-up since the start of the Danish Lithosphere Centre (DLC) in 1994. The studies cover a range of disciplines and geological processes from the early development of pre-break-up basin formation and sedimentation over the main phase of basaltic magmatism to the late stages of alkaline magmatism and structural re-equilibration. The East Greenland field activities in the summer of 2000, collectively referred to as EG 2000, were facilitated by a logistic platform provided by support from Statens Naturvidenskabelige Forskningsråd (SNF, the Danish Natural Science Research Council) and the Bureau of Minerals and Petroleum (BMP) in Nuuk, Greenland for the retrieval of 6 km of drillcore from the Skaergaard intrusion. During 1989 and 1990 mineral exploration had resulted in drilling of more than 15 km of core through the classic layered gabbros. The logistic platform also provided support for DLC and Geological Survey of Denmark and Greenland (GEUS) field work and projects throughout the Kangerlussuaq region and on the Blosseville Kyst (Fig. 1), as well as mineral exploration and petroleum company activities.


2012 ◽  
Vol 5 (2) ◽  
pp. 112-125 ◽  
Author(s):  
Fumio Komatsu ◽  
Yasuo Kagawa ◽  
Terue Kawabata ◽  
Yoshinori Kaneko ◽  
Hideki Kudoh ◽  
...  

2020 ◽  
Vol 105 (11) ◽  
pp. 1712-1723
Author(s):  
Yu Zhang ◽  
Pete Hollings ◽  
Yongjun Shao ◽  
Dengfeng Li ◽  
Huayong Chen ◽  
...  

Abstract The origin of stratabound deposits in the Middle-Lower Yangtze River Valley Metallogenic Belt (MLYRB), Eastern China, is the subject of considerable debate. The Xinqiao Cu-Fe-Au deposit in the Tongling ore district is a typical stratabound ore body characterized by multi-stage magnetite. A total of six generations of magnetite have been identified. Mt1 is commonly replaced by porous Mt2, and both are commonly trapped in the core of Mt3, which is characterized by both core-rim textures and oscillatory zoning. Porous Mt4 commonly truncates the oscillatory zoning of Mt3, and Mt5 is characterized by 120° triple junction texture. Mt1 to Mt5 are commonly replaced by pyrite that coexists with quartz, whereas Mt6, with a fine-grained foliated and needle-like texture, commonly cuts the early pyrite as veins and is replaced by pyrite that coexists with calcite. The geochemistry of the magnetite suggests that they are hydrothermal in origin. The microporosity of Mt2 and Mt4 magnetite, their sharp contacts with Mt1 and Mt3, and lower trace-element contents (e.g., Si, Ca, Mg, and Ti) than Mt1 and Mt3 suggest that they formed via coupled dissolution and reprecipitation of the precursor Mt1 and Mt3 magnetite, respectively. This was likely caused by high-salinity fluids derived from intensive water-rock interaction between the magmatic-hydrothermal fluids associated with the Jitou stock and Late Permian metalliferous black shales. The 120° triple junction texture of Mt5 suggests it is the result of fluid-assisted recrystallization, whereas Mt6 formed by replacement of hematite as a result of fracturing. The geochemistry of the magnetite suggests that the temperature increased from Mt2 to Mt3 and implies that there were multiple pulses of fluids from a magmatic-hydrothermal system. Therefore, we propose that the Xinqiao stratiform mineralization was genetically associated with multiple influxes of magmatic hydrothermal fluids derived from the Early Cretaceous Jitou stock. This study demonstrates that detailed texture examination and in situ trace-elements analysis under robust geological and petrographic frameworks can effectively constrain the mineralization processes and ore genesis.


2021 ◽  
Vol 13 (1) ◽  
pp. 166-187
Author(s):  
Hao Liu ◽  
Chan Wang ◽  
Yong Li ◽  
Jianghong Deng ◽  
Bin Deng ◽  
...  

Abstract The black rock series in the Qiongzhusi Formation contains important geochemical information about the early Cambrian tectonic and ecological environment of the southwestern Yangtze Block. In this paper, major, trace, and rare earth element data are presented in an attempt to reveal the sediment source during the deposition of the early Cambrian Qiongzhusi Formation and to reconstruct the sedimentary tectonic environment and weathering intensity during that time. The basin primarily received continental clastic material with neutral-acidic igneous rocks from a stable source and with a moderate level of maturity during the depositional period of the Qiongzhusi Formation. Furthermore, the strata were weakly influenced by submarine hydrothermal fluids during diagenesis. The reconstruction of the sedimentary environment and weathering intensity shows that P2O5 enrichment and water body stratification occurred due to the effects of upwelling ocean currents during the depositional period of the Qiongzhusi Formation. The combination of upwelling and bottom-water hydrothermal fluids led to environmental changes in the study area, from dry and hot to moist and warm. Last, the reconstruction of the tectonic environment of the Qiongzhusi Formation indicates that deposition occurred in continental slope and marginal marine environments associated with a continental arc tectonic system. These findings provide an essential basis for the comprehensive reconstruction of the early Cambrian sedimentary environment of the Yangtze Block.


Sign in / Sign up

Export Citation Format

Share Document