Tectonic settings of porphyry-type mineralization and hydrothermal alteration in Paleozoic island arcs and active continental margins, Kyrghyz Range, (Tien Shan) Kyrghyzstan

1997 ◽  
Vol 32 (5) ◽  
pp. 434-440 ◽  
Author(s):  
R. J. Jenchuraeva

The continental margin is the surface morphological expression of the deeper fundamental transition between the thick low density continental igneous crust and the thin high density and chemically different oceanic igneous crust. Covering the transition are thick sediment accumulations comprising over half the total sediments of the ocean, so that the precise morphological boundaries often differ in position from those of the deeper geology. Continental margins are classified as active or passive depending on the level of seismicity. Active continental margins are divided into two categories, based on the depth distribution of earthquakes and the tectonic regime. Active transform margins, characterized by shear and shallow focus earthquakes, result from horizontal shear motion between plates. Active compressional margins are characterized by shallow, intermediate and deep earthquakes along a dipping zone, by oceanic trenches and by volcanic island arcs or mountain ranges depending on whether the margin is oceanocean or ocean-continent. Passive margins, found in the Atlantic and Indian Oceans, are formed initially by the rifting of continental crust and mark the ocean-continent boundary within the spreading plate. They are characterized by continental shelf, slope and rise physiographic provinces. Once clear of the rifting axis, they cool and subside. Sedimentation can prograde the shelf and load the edge leading to further down warping; changes of sea level lead to erosion by wave action and by ice; ocean currents and turbidity currents redistribute sediments; slumps occur in unstable areas. The passive and sediment-starved margin west of Europe is described where the following factors have been significant: (a) faulting related to initial rifting; (b) infilling and progradation by sediments; (c) slumping; (d) contour current erosion and deposition; (e)canyon erosion.


2019 ◽  
Vol 489 (2) ◽  
pp. 166-169
Author(s):  
G. A. Petrov ◽  
N. I. Tristan ◽  
G. N. Borozdina ◽  
A. V. Maslov

For the first time, the time of completion of the formation of calc-alkaline volcanic complexes of the Devonian Island Arc (Franian) in the Northern Urals was determined. It is shown that the late Devonian volcanic rocks of the Limka series have geochemical characteristics that bring them closer to the rocks of developed island arcs and active continental margins. The detected delay of the final episode of calc-alkaline volcanism in the Northern Urals in comparison with the similar event in the southern Urals may be due to the oblique nature of the subduction.


2010 ◽  
pp. 91-122
Author(s):  
Wolfgang Frisch ◽  
Martin Meschede ◽  
Ronald Blakey

2020 ◽  
Vol 33 (02) ◽  
pp. 286-296
Author(s):  
Mehdi Bina ◽  
Mohammad Ali Arian ◽  
Mohsen Pourkermani ◽  
Mohammad Hasan Bazoobandi ◽  
Abdollah Yazdi

The study area is located in Lavasanat District in the northeast of Tehran in Central Alborz zone. The outcrops are mainly linked to Karaj Formation, which belongs to the upper Eocene to Oligocene periods. In the study area, there are various plutonic rocks that are identified in the form of numerous dike and sill on the ground. These sills are injected in between sedimentary layers. The rocks forming the sills include the spectrum of gabbro, gabbro diorite, diorite, monzonite, and syenite. In some areas, these rocks have undergone alterations and have traces of the saussuritization and chloritization phenomena. There are also two generations of amorphous. The first generation is fully chloritized due to alteration while the second generation is unaltered. Unlike many diorites and monzonites, which typically have hornblendes, the neutral rocks such as diorite and monzonite lack hornblendes. Hence, their magmas were dry and dehydrated. Based on the geochemical studies conducted on 17 samples (15 sill samples and 2 host rock samples) and the diagrams of the tectonic settings of rocks, the study sills are in the WIN (within plate). However, two samples of the host rock are within the range of the active continental margins.


2020 ◽  
Vol 90 (11) ◽  
pp. 1581-1600
Author(s):  
Luke A. Pettinga ◽  
Zane R. Jobe

ABSTRACT Submarine landscapes, like their terrestrial counterparts, are sculpted by autogenic sedimentary processes toward morphologies at equilibrium with their allogenic controls. While submarine channels and nearby, inter-channel continental-margin areas share boundary conditions (e.g., terrestrial sediment supply, tectonic deformation), there are significant differences between the style, recurrence, and magnitude of their respective autogenic sedimentary processes. We predict that these process-based differences affect the rates of geomorphic change and equilibrium (i.e., graded) morphologies of submarine-channel and continental-margin longitudinal profiles. To gain insight into this proposed relationship, we document, classify (using machine learning), and analyze longitudinal profiles from 50 siliciclastic continental margins and associated submarine channels which represent a range of sediment-supply regimes and tectonic settings. These profiles tend to evolve toward smooth, lower-gradient longitudinal profiles, and we created a “smoothness” metric as a proxy for the relative maturity of these profiles toward the idealized equilibrium profile. Generally, higher smoothness values occur in systems with larger sediment supply, and the smoothness of channels typically exceeds that of the associated continental margin. We propose that the high rates of erosion, bypass, and deposition via sediment gravity flows act to smooth and mature channel profiles more rapidly than the surrounding continental margin, which is dominated by less-energetic diffusive sedimentary processes. Additionally, tectonic deformation will act to reduce the smoothness of these longitudinal profiles. Importantly, the relationship between total sediment supply and the difference between smoothness values of associated continental margins and submarine channels (the “smoothness Δ”) follows separate trends in passive and active tectonic settings, which we attribute to the variability in relative rates of smoothness development between channelized and inter-channel environments in the presence or absence of tectonic deformation. We propose two endmember pathways by which continental margins and submarine channels coevolve towards their respective equilibrium profiles with increased sediment supply: 1) Coupled Evolution Model (common in passive tectonic settings), in which the smoothness Δ increases only slightly before remaining static, and 2) Decoupled Evolution Model (common in active tectonic settings), in which the smoothness Δ increases more rapidly and to a greater final value. Our analysis indicates that the interaction of the allogenic factors of sediment supply and tectonic deformation with the autogenic sedimentary processes characteristic of channelized and inter-channel areas of the continental margin may account for much of the variability between coevolution pathways and depositional architectures.


Sign in / Sign up

Export Citation Format

Share Document