Multidisciplinary design optimization of tunnel boring machine considering both structure and control parameters under complex geological conditions

2016 ◽  
Vol 54 (4) ◽  
pp. 1073-1092 ◽  
Author(s):  
Wei Sun ◽  
Xiaobang Wang ◽  
Lintao Wang ◽  
Jie Zhang ◽  
Xueguan Song
2018 ◽  
Vol 10 (1) ◽  
pp. 168781401875472 ◽  
Author(s):  
Wei Sun ◽  
Xiaobang Wang ◽  
Maolin Shi ◽  
Zhuqing Wang ◽  
Xueguan Song

A multidisciplinary design optimization model is developed in this article to optimize the performance of the hard rock tunnel boring machine using the collaborative optimization architecture. Tunnel boring machine is a complex engineering equipment with many subsystems coupled. In the established multidisciplinary design optimization process of this article, four subsystems are taken into account, which belong to different sub-disciplines/subsytems: the cutterhead system, the thrust system, the cutterhead driving system, and the economic model. The technology models of tunnel boring machine’s subsystems are build and the optimization objective of the multidisciplinary design optimization is to minimize the construction period from the system level of the hard rock tunnel boring machine. To further analyze the established multidisciplinary design optimization, the correlation between the design variables and the tunnel boring machine’s performance is also explored. Results indicate that the multidisciplinary design optimization process has significantly improved the performance of the tunnel boring machine. Based on the optimization results, another two excavating processes under different geological conditions are also optimized complementally using the collaborative optimization architecture, and the corresponding optimum performance of the hard rock tunnel boring machine, such as the cost and energy consumption, is compared and analysed. Results demonstrate that the proposed multidisciplinary design optimization method for tunnel boring machine is reliable and flexible while dealing with different geological conditions in practical engineering.


Author(s):  
Shinya Honda ◽  
Itsuro Kajiwara ◽  
Yoshihiro Narita

Structures and control systems of smart laminated composites consisting of graphite-epoxy composites and piezoelectric actuators are designed optimally for the vibration suppression. Placements of piezoelectric actuators, lay-up configurations of laminated composite plates and the H2 control system are employed as design variables and are optimized simultaneously by a simple genetic algorithm (SGA). An objective function is H2 performance with assuming that the state feedback is available. A multidisciplinary design optimization is performed with above three design variables and then the output feedback system is reconstructed with the dynamic compensator based on the linear matrix inequality (LMI) approach. Optimization results show that the optimized smart composite successfully realizes vibration suppression of the system and it is confirmed that the present multidisciplinary design optimization technique is quite efficient to the smart composites.


2017 ◽  
Vol 9 (1) ◽  
pp. 168781401668522 ◽  
Author(s):  
Rong Yuan ◽  
Haiqing Li

Because of the increasing complexity in engineering systems, multidisciplinary design optimization has attracted increasing attention. High computational expense and organizational complexity are two main challenges of multidisciplinary design optimization. To address these challenges, the hierarchical control method of complex systems is developed in this study. Hierarchical control method is a powerful way which has been utilized widely in the control and coordination of large-scale complex systems. Here, a hierarchical control method–based coupling relationship coordination algorithm is proposed to solve multidisciplinary design optimization problems. Coupling relationship coordination algorithm decouples the involved disciplines of a complex system and then optimizes each discipline objective at sub-system level. Coupling relationship coordination algorithm can maintain the consistency of interaction information (or in other words, sharing design variables and coupling design variables) in different disciplines by introducing control parameters. The control parameters are assigned by the coordinator at system level. A mechanical structure multidisciplinary design optimization problem is solved to illustrate the details of the proposed approach.


2021 ◽  
Vol 9 (5) ◽  
pp. 478
Author(s):  
Hao Chen ◽  
Weikun Li ◽  
Weicheng Cui ◽  
Ping Yang ◽  
Linke Chen

Biomimetic robotic fish systems have attracted huge attention due to the advantages of flexibility and adaptability. They are typically complex systems that involve many disciplines. The design of robotic fish is a multi-objective multidisciplinary design optimization problem. However, the research on the design optimization of robotic fish is rare. In this paper, by combining an efficient multidisciplinary design optimization approach and a novel multi-objective optimization algorithm, a multi-objective multidisciplinary design optimization (MMDO) strategy named IDF-DMOEOA is proposed for the conceptual design of a three-joint robotic fish system. In the proposed IDF-DMOEOA strategy, the individual discipline feasible (IDF) approach is adopted. A novel multi-objective optimization algorithm, disruption-based multi-objective equilibrium optimization algorithm (DMOEOA), is utilized as the optimizer. The proposed MMDO strategy is first applied to the design optimization of the robotic fish system, and the robotic fish system is decomposed into four disciplines: hydrodynamics, propulsion, weight and equilibrium, and energy. The computational fluid dynamics (CFD) method is employed to predict the robotic fish’s hydrodynamics characteristics, and the backpropagation neural network is adopted as the surrogate model to reduce the CFD method’s computational expense. The optimization results indicate that the optimized robotic fish shows better performance than the initial design, proving the proposed IDF-DMOEOA strategy’s effectiveness.


Author(s):  
Dongqin Li ◽  
Yifeng Guan ◽  
Qingfeng Wang ◽  
Zhitong Chen

The design of ship is related to several disciplines such as hydrostatic, resistance, propulsion and economic. The traditional design process of ship only involves independent design optimization within each discipline. With such an approach, there is no guarantee to achieve the optimum design. And at the same time improving the efficiency of ship optimization is also crucial for modem ship design. In this paper, an introduction of both the traditional ship design process and the fundamentals of Multidisciplinary Design Optimization (MDO) theory are presented and a comparison between the two methods is carried out. As one of the most frequently applied MDO methods, Collaborative Optimization (CO) promotes autonomy of disciplines while providing a coordinating mechanism guaranteeing progress toward an optimum and maintaining interdisciplinary compatibility. However there are some difficulties in applying the conventional CO method, such as difficulties in choosing an initial point and tremendous computational requirements. For the purpose of overcoming these problems, Design Of Experiment (DOE) and a new support vector regression algorithm are applied to CO to construct statistical approximation model in this paper. The support vector regression algorithm approximates the optimization model and is updated during the optimization process to improve accuracy. It is shown by examples that the computing efficiency and robustness of this CO method are higher than with the conventional CO method. Then this new Collaborative Optimization (CO) method using approximate technology is discussed in detail and applied in ship design which considers hydrostatic, propulsion, weight and volume, performance and cost. It indicates that CO method combined with approximate technology can effectively solve complex engineering design optimization problem. Finally, some suggestions on the future improvements are proposed.


Sign in / Sign up

Export Citation Format

Share Document