Grey theory applied to evaluate the tribological performances of the a-C:H(N) coating films prepared by differing the nitrogen content and the film thickness

2005 ◽  
Vol 27 (9-10) ◽  
pp. 845-853 ◽  
Author(s):  
J.L. Lin ◽  
J.F. Lin
Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1076
Author(s):  
Ayako Yano ◽  
Kyoichi Hamada ◽  
Kenji Amagai

In this paper, we invented a novel observation method of the coating film formation process using the fluorescence method. With this method, the temporal change in the coating film thickness can be evaluated quantitatively. In addition, since the thickness and flow of the coating film can be measured simultaneously, the detailed coating film formation process was clarified. In the experiment, the adhesion behavior of the spray-paint droplets when applied to a wall was investigated. The characteristics of coating films formed by the spray droplets, particularly the influence of injection pressure on the coating film formation, were determined using the fluorescence method. At the initial stage of the coating process, the coating area increased linearly. When the ratio of the coating area to the measurement range reached about 80%, the rate at which the coating area increased slowed down, and an overlap began. The amount of paint that adhered to the coating film formation could be estimated by calculating the overlap ratio. Moreover, the thickness and smoothness of the coating film were evaluated using the histogram data of the fluorescence intensity. The leveling process was discussed in relation to the standard deviation of the histogram data. In addition, the flow of the paint during the coating film formation was investigated using tracer particles, and the effect of the spray gun injection pressure on the leveling process was investigated. Changes in the film thickness and flow during the coating film formation process could be evaluated through fluorescence observation.


2016 ◽  
Vol 791 ◽  
pp. 495-518 ◽  
Author(s):  
D. Kang ◽  
A. Nadim ◽  
M. Chugunova

We examine the dynamics of a thin viscous liquid film on the outer surface of a solid sphere rotating around its vertical axis in the presence of gravity. An asymptotic model describing the evolution of the film thickness is derived in the rotating frame based on the lubrication approximation. The model includes the centrifugal and gravity forces and the stabilizing effect of surface tension. Depending on the values of the parameters, the problem admits different types of steady states: one with a uniformly positive film thickness, or those with one or two dry zones on the sphere. We prove that all steady states are energy minimizers and hence global attractors for axisymmetric states.


2013 ◽  
Vol 464 ◽  
pp. 83-88
Author(s):  
Jitendra Singh ◽  
Arvind K. Singh ◽  
Sanjeev K. Gupta ◽  
J. Akhtar

nanocomposite [(Co91.5Zr8.5)- or CZN films has been prepared by reactive co-sputter deposition method. Nitrogen content plays key role to tune soft magnetic properties. Experimental observation shows that, non-magnetic nitrogen content enhances magnetization and reduces coercivity. The nanostructure is composed of Co nanoclusters embedded in CoN/ZrN matrix, revealed by high resolution transmission electron microscope study. The d-spacing of single Co nanocluster was found to be ~0.22nm corresponding to (002) phase of Cobalt. X-ray diffraction result is in agreement with cubic (400) and (622) phase of CoZr. High electrical resistivity ρs~108μΩ-cm attained corresponding to 16% N2content films. Hysteresis loop squareness depends on film thickness and coercivity squareness (S*)~0.84, obtained for ~250nm film thickness. A correlated composite nanostructure evolution is responsible for nitrogen induced magnetization and, suggests that film properties can tuned by controlling nitrogen content, in CoN/ZrN composite matrix.


Author(s):  
R.A. Ploc

Samples of low-nickel Zircaloy-2 (material MLI-788-see(1)), when anodically polarized in neutral 5 wt% NaCl solutions, were found to be susceptible to pitting and stress corrosion cracking. The SEM revealed that pitting of stressed samples was occurring below a 2000Å thick surface film which behaved differently from normal zirconium dioxide in that it did not display interference colours. Since the initial film thickness was approximately 65Å, attempts were made to examine the product film by transmission electron microscopy to deduce composition and how the corrosion environment could penetrate the continuous layer.


Author(s):  
T.E. Pratt ◽  
R.W. Vook

(111) oriented thin monocrystalline Ni films have been prepared by vacuum evaporation and examined by transmission electron microscopy and electron diffraction. In high vacuum, at room temperature, a layer of NaCl was first evaporated onto a freshly air-cleaved muscovite substrate clamped to a copper block with attached heater and thermocouple. Then, at various substrate temperatures, with other parameters held within a narrow range, Ni was evaporated from a tungsten filament. It had been shown previously that similar procedures would yield monocrystalline films of CU, Ag, and Au.For the films examined with respect to temperature dependent effects, typical deposition parameters were: Ni film thickness, 500-800 A; Ni deposition rate, 10 A/sec.; residual pressure, 10-6 torr; NaCl film thickness, 250 A; and NaCl deposition rate, 10 A/sec. Some additional evaporations involved higher deposition rates and lower film thicknesses.Monocrystalline films were obtained with substrate temperatures above 500° C. Below 450° C, the films were polycrystalline with a strong (111) preferred orientation.


Author(s):  
George C. Ruben

Single molecule resolution in electron beam sensitive, uncoated, noncrystalline materials has been impossible except in thin Pt-C replicas ≤ 150Å) which are resistant to the electron beam destruction. Previously the granularity of metal film replicas limited their resolution to ≥ 20Å. This paper demonstrates that Pt-C film granularity and resolution are a function of the method of replication and other controllable factors. Low angle 20° rotary , 45° unidirectional and vertical 9.7±1 Å Pt-C films deposited on mica under the same conditions were compared in Fig. 1. Vertical replication had a 5A granularity (Fig. 1c), the highest resolution (table), and coated the whole surface. 45° replication had a 9Å granulartiy (Fig. 1b), a slightly poorer resolution (table) and did not coat the whole surface. 20° rotary replication was unsuitable for high resolution imaging with 20-25Å granularity (Fig. 1a) and resolution 2-3 times poorer (table). Resolution is defined here as the greatest distance for which the metal coat on two opposing faces just grow together, that is, two times the apparent film thickness on a single vertical surface.


1981 ◽  
Vol 42 (C6) ◽  
pp. C6-825-C6-827
Author(s):  
P. Taborek ◽  
M. Sinvani ◽  
M. Weimer ◽  
D. Goodstein

Sign in / Sign up

Export Citation Format

Share Document