Hidden semi-Markov model-based method for tool wear estimation in milling process

2017 ◽  
Vol 92 (9-12) ◽  
pp. 3647-3657 ◽  
Author(s):  
Dongdong Kong ◽  
Yongjie Chen ◽  
Ning Li
2014 ◽  
Vol 565 ◽  
pp. 36-45
Author(s):  
Hadjadj Abdechafik ◽  
Kious Mecheri ◽  
Ameur Aissa

The objective of this study is to develop a process of treatment of the vibratory signals generated during a horizontal high speed milling process without applying any coolant in order to establish a monitoring system able to improve the machining performance. Thus, many tests were carried out on the horizontal high speed centre (PCI Météor 10), in given cutting conditions, by using a milling cutter with only one insert and measured its frontal wear from its new state that is considered as a reference state until a worn state that is considered as unsuitable for the tool to be used. The results obtained show that the first harmonic follow well the evolution of frontal wear, on another hand a wavelet transform is used for signal processing and is found to be useful for observing the evolution of the wavelet approximations through the cutting tool life. The power and the root mean square (RMS) values of the wavelet transformed signal gave the best results and can be used for tool wear estimation. All this features can constitute the suitable indicators for an effective detection of tool wear and then used for the input parameters of an on-line monitoring system. Nevertheless we noted the remarkable influence of the machining cycle on the quality of measurements by the introduction of a bias on the signal; this phenomenon appears in particular in horizontal milling and in the majority of studies is ignored


2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Yang Hui ◽  
Xuesong Mei ◽  
Gedong Jiang ◽  
Tao Tao ◽  
Changyu Pei ◽  
...  

Milling tool wear state recognition plays an important role in controlling the quality of milled parts and reducing machine tool downtime. However, the characteristics of milling process limit the accuracy and stability of tool condition monitoring (TCM) employing vibration signals. To improve this problem, this paper explores the use of vibration signals as sensing approach for recognizing tool wear states during milling operation by using the stacked generalization (SG) ensemble model. In this study, vibration signals collected during the milling process are analyzed through the time domain, frequency domain, and time-frequency domain to extract signal features. The support vector machine recursive feature elimination (SVM-RFE) algorithm is used to select the main features which are most relevant to tool wear states. The SG ensemble model based on SVM, decision tree (DT), naive Bayes (NB), and SG ensemble strategy is constructed to recognize tool wear states. The proposed method is experimental verified, and the results show that the recognition accuracy of the established SG ensemble model is 98.74% and the overall G-mean and AUC evaluation value of the model is 0.98 and 0.98, respectively. In addition, compared with other ensemble models and single models, the SG ensemble model based on vibration signals has better recognition accuracy and stability than other models.


2018 ◽  
Vol 1 (4) ◽  
pp. 384
Author(s):  
Takanori Yazawa ◽  
Kohei Shimazaki ◽  
Shotaro Matsuguchi ◽  
Tatsuki Otsubo ◽  
Tomonori Kato ◽  
...  

2018 ◽  
Vol 1 (4) ◽  
pp. 384 ◽  
Author(s):  
Tomonori Kato ◽  
Tatsuki Otsubo ◽  
Kohei Shimazaki ◽  
Shotaro Matsuguchi ◽  
Yusuke Okamoto ◽  
...  

2014 ◽  
Vol 61 (6) ◽  
pp. 2900-2911 ◽  
Author(s):  
Omid Geramifard ◽  
Jian-Xin Xu ◽  
Jun-Hong Zhou ◽  
Xiang Li

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Chen Gao ◽  
Sun Bintao ◽  
Heng Wu ◽  
Mengjuan Peng ◽  
Yuqing Zhou

Timely and effective identification and monitoring of tool wear is important for the milling process. However, traditional methods of tool wear estimation have run into difficulties due to under small samples with less prior knowledge. This article addresses this issue by employing a multisensor tool wear estimation method based on blind source separation technology. Stationary subspace analysis (SSA) technology is applied to transform multisensor signals to stationary and nonstationary sources without prior information of signals. Ten dimensionless time-frequency indices of the nonstationary signal are extracted to train least squares support vector regression (LS-SVR) to obtain a tool wear estimation model for small samples. The analysis and comparison of one benchmark tool wear dataset and tool wear experiments verify the feasibility and effectiveness of the proposed method and outperform other two current methods.


Sign in / Sign up

Export Citation Format

Share Document