Study of a burr size calculation model for the hot sawing and shearing process

2020 ◽  
Vol 110 (3-4) ◽  
pp. 605-616
Author(s):  
Chen Wang ◽  
Yuanhua Shuang ◽  
Wenhao Wang ◽  
Yutian Zhang ◽  
Chao Li ◽  
...  
Keyword(s):  
2018 ◽  
Vol 106 (6) ◽  
pp. 603 ◽  
Author(s):  
Bendaoud Mebarek ◽  
Mourad Keddam

In this paper, we develop a boronizing process simulation model based on fuzzy neural network (FNN) approach for estimating the thickness of the FeB and Fe2B layers. The model represents a synthesis of two artificial intelligence techniques; the fuzzy logic and the neural network. Characteristics of the fuzzy neural network approach for the modelling of boronizing process are presented in this study. In order to validate the results of our calculation model, we have used the learning base of experimental data of the powder-pack boronizing of Fe-15Cr alloy in the temperature range from 800 to 1050 °C and for a treatment time ranging from 0.5 to 12 h. The obtained results show that it is possible to estimate the influence of different process parameters. Comparing the results obtained by the artificial neural network to experimental data, the average error generated from the fuzzy neural network was 3% for the FeB layer and 3.5% for the Fe2B layer. The results obtained from the fuzzy neural network approach are in agreement with the experimental data. Finally, the utilization of fuzzy neural network approach is well adapted for the boronizing kinetics of Fe-15Cr alloy.


2011 ◽  
Vol 131 (12) ◽  
pp. 1017-1023 ◽  
Author(s):  
Norihito Yanagita ◽  
Tatsuro Kato ◽  
Toshiaki Rokunohe ◽  
Takeshi Iwata ◽  
Hiroki Kojima ◽  
...  

2020 ◽  
pp. 89-97
Author(s):  
A. U. Yakupov ◽  
D. A. Cherentsov ◽  
K. S. Voronin ◽  
Yu. D. Zemenkov

The article performed the processing of the results of a computer experiment to determine the cooling time of oil in a stopped oil pipeline. We proposed a calculation model in previous works that allows you to simulate the process of cooling oil.There was a need to verify the previously obtained results when conducting a laboratory experiment on a stand with soil. To conduct the experiment, it was necessary to conduct the planning of the experiment. The factors affecting the cooling time of oil in the oil pipeline, which will vary in the proposed experiment, are determined, empirical relationships are established. A regression analysis was carried out, and the dispersion homogeneity was checked using the Cochren criterion. The estimates of reproducibility variances are calculated. The adequacy hypothesis was tested using the Fisher criterion. Significant regression coefficients are established.


2020 ◽  
Vol 68 (2) ◽  
pp. 137-145
Author(s):  
Yang Zhouo ◽  
Ming Gao ◽  
Suoying He ◽  
Yuetao Shi ◽  
Fengzhong Sun

Based on the basic theory of water droplets impact noise, the generation mechanism and calculation model of the water-splashing noise for natural draft wet cooling towers were established in this study, and then by means of the custom software, the water-splashing noise was studied under different water droplet diameters and water-spraying densities as well as partition water distribution patterns conditions. Comparedwith the water-splashing noise of the field test, the average difference of the theoretical and the measured value is 0.82 dB, which validates the accuracy of the established theoretical model. The results based on theoretical model showed that, when the water droplet diameters are smaller in cooling tower, the attenuation of total sound pressure level of the water-splashing noise is greater. From 0 m to 8 m away from the cooling tower, the sound pressure level of the watersplashing noise of 3 mm and 6 mm water droplets decreases by 8.20 dB and 4.36 dB, respectively. Additionally, when the water-spraying density becomes twice of the designed value, the sound pressure level of water-splashing noise all increases by 3.01 dB for the cooling towers of 300 MW, 600 MW and 1000 MW units. Finally, under the partition water distribution patterns, the change of the sound pressure level is small. For the R s/2 and Rs/3 partition radius (Rs is the radius of water-spraying area), when the water-spraying density ratio between the outer and inner zone increases from 1 to 3, the sound pressure level of water-splashing noise increases by 0.7 dB and 0.3 dB, respectively.


2013 ◽  
Vol 353-356 ◽  
pp. 2073-2078
Author(s):  
Tian Zhong Ma ◽  
Yan Peng Zhu ◽  
Chun Jing Lai ◽  
De Ju Meng

Slope anchorage structure of soil nail is a kind of economic and effective flexible slope supporting structure. This structure at present is widely used in China. The supporting structure belong to permanent slope anchorage structure, so the design must consider earthquake action. Its methods of dynamical analysis and seismic design can not be found for the time being. The seismic design theory and method of traditional rigidity retaining wall have not competent for this new type of flexible supporting structure analysis and design. Because the acceleration along the slope height has amplification effect under horizontal earthquake action, errors should be induced in calculating earthquake earth pressure using the constant acceleration along the slope height. Considering the linear change of the acceleration along the slope height and unstable soil with the fortification intensity the influence of the peak acceleration, the earthquake earth pressure calculation formula is deduced. The soil nailing slope anchorage structure seismic dynamic calculation model is established and the analytical solutions are obtained. The seismic design and calculation method are given. Finally this method is applied to a case record for illustration of its capability. The results show that soil nailing slope anchorage structure has good aseismic performance, the calculation method of soil nailing slope anchorage structure seismic design is simple, practical, effective. The calculation model provides theory basis for the soil nailing slope anchorage structure of seismic design. Key words: soil nailing; slope; earthquake action; seismic design;


2020 ◽  
Vol 20 (3) ◽  
pp. 951-958
Author(s):  
Wenguang Song ◽  
Qiongqin Jiang

The fluid property parameter calculation affects the accuracy of the interpretation the accuracy, in the interpretation of the liquid production profile. Therefore, it is particularly important to accurately calculate the physical property parameter values, in the establishment of the fluid property parameter expert knowledge base system. The main physical parameters include the following calculation methods of the oil. The oil property parameter conversion formula mainly studies the formulas such as bubble point pressure, dissolved gas-oil ratio, crude oil volume coefficient, crude oil density, crude oil viscosity, and crude oil compression coefficient. Design expert knowledge base system, it is based on the calculation methods of these physical parameters. A computational fluid property parameter model is constructed by training production log sample data. Finally, the interactive and friendly product interpretation software model was developed in 9 wells’ data. The design calculation model can increase the accuracy to achieve 95% of oil fluid property parameter. Accurately calculate fluid property parameter values.


2012 ◽  
Vol 174-177 ◽  
pp. 2012-2015
Author(s):  
Xiao Long Zhou ◽  
Ying Min Li ◽  
Lin Bo Song ◽  
Qian Tan

There are two typical seismic damage characteristics to the masonry building with frame shear wall structure at first two stories, and the lateral stiffness ratio of the third storey to the second storey is one of the key factors mostly affecting the seismic performance of this kind of building. However, some factors are not considered sufficiently in current Chinese seismic codes. According to the theory of performance-based seismic design, the seismic performance of this kind of structure is analyzed in this paper by taking time-history analysis on models which with different storey stiffness ratios. The results show that when the lateral stiffness ratio controlled in a reasonable range, the upper masonry deformation can be ensured in a range of elastic roughly, and the bottom frame can be guaranteed to have sufficient deformation and energy dissipation capacity. Finally, according to the seismic performance characteristics of masonry building with frame shear wall structure at first two stories, especially the characteristics under strong earthquakes, a method of simplified calculation model for the upper masonry is discussed in this paper.


Sign in / Sign up

Export Citation Format

Share Document