Assessing the dwell time effect during friction stir spot welding of aluminum polyethylene multilayer sheets by experiments and numerical simulations

Author(s):  
Pritam Kumar Rana ◽  
R. Ganesh Narayanan ◽  
Satish V. Kailas
Author(s):  
Jicheng Gao ◽  
Jiachen Dong ◽  
Sunyi Zhang ◽  
Liang Yu ◽  
Huiming Jin ◽  
...  

In this research, thermoplastic polyimide (TPI) were welding via friction stir spot welding (FSSW) in order to evaluate the feasibility of the technology. The welding tool with a tri-flute pin was used for keeping the welding effectiveness. The effect of the rotation speed and dwell time on the microstructure and shear strength was studied. The results shows that the number of gap defects between the shoulder affect zone and the pin affect zone decreased with the increase of the rotation speed. The boundary of the shoulder affect zone and the pin affect zone was no clear when increasing the dwell time from 10 s to 20 s. Long dwell time could increase the mixing time and reduce the materials viscosity, which made the structure was denser. The maximal shear strength was obtained 85.5% of the base materials. The differential scanning calorimetry (DSC) results indicated that the melting behaviour of different regions was no obvious difference. It indicated that FSSW had a feasible and potential technology to join the high temperature resistant engineering plastics.


2020 ◽  
Vol 899 ◽  
pp. 117-125
Author(s):  
Armansyah ◽  
Juri Saedon ◽  
Hwi Chie Ho ◽  
Shahriman Adenan

In an initiative to reveal the property of welded joint, investigation and assessment of the welding parameters in friction stir spot welding (FSSW) was carried out. In this study, the AA5052-H112 sheets with 2mm thickness was welded using cylindrical tool pin profile under different combinations of main process parameters i.e. spindle speed, tool depth, and dwell time. The fatigue test under cyclical load condition was performed to investigate the dynamic behavior of the welded joint. Failure mode analysis on the fracture of the weld joint after fatigue test was took also consideration. Finally, results from the test were evaluated using analysis of variance (ANOVA) to deter-mine statistically significant factors and associated percentage contribution together with the generation of main effects plots. From ANOVA results, dwell time had the highest influence on fatigue load with a PCR of 52.8%, followed by the spindle speed 37.1%, and then tool depth 6%.


2017 ◽  
Vol 867 ◽  
pp. 105-111
Author(s):  
S. Ramesh Babu ◽  
M. Nithin ◽  
S. Pavithran ◽  
B Parameshwaran

The Electrical Resistance Welding (ERW) of Magnesium and Aluminium is more difficult than steel because the welding machines must provide high currents and exact pressures in order to provide the heat necessary to melt the magnesium for proper fusion at the interface in order to produce a sound weld. Further, resistance welding of magnesium requires a backup plate made of steel to conduct the heat to the workpiece material. To overcome this problem, Friction Stir Spot Welding (FSSW) has been developed. In this study, the hardness distribution and the tensile shear strength of FSSW welds in the AZ31B Magnesium alloy has been investigated and it has been found that tool rotational speed and dwell time plays a major role in determining the weld strength. From the experimental study, a tool rotational speed of 1100 rpm and dwell time of 20 s produced good shear strength of 2824 N and the corresponding grain size was 4.54 μm. This result is very well supported by microstructural examinations and hardness distribution studies.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
X. W. Yang ◽  
T. Fu ◽  
W. Y. Li

Friction stir spot welding (FSSW) is a very useful variant of the conventional friction stir welding (FSW), which shows great potential to be a replacement of single-point joining processes like resistance spot welding and riveting. There have been many reports and some industrial applications about FSSW. Based on the open literatures, the process features and variants, macro- and microstructural characteristics, and mechanical properties of the resultant joints and numerical simulations of the FSSW process were summarized. In addition, some applications of FSSW in aerospace, aviation, and automobile industries were also reviewed. Finally, the current problems and issues that existed in FSSW were indicated.


2018 ◽  
Author(s):  
Ahmed Mahgoub ◽  
Abdelaziz Bazoune ◽  
Fadi Al-Badour ◽  
Necar Merah ◽  
Abdelrahman Shuaib

In this paper, a Coupled Eulerian Lagrangian (CEL) finite element model (FEM) was developed to simulate the friction stir spot welding (FSSW) of commercial pure copper. Through simulations results, the paper presents and discusses the effect of FSSW process parameters; namely rotational speed, plunging rate and dwell time, on the developed temperatures and their distribution within the workpiece as well as material flow and deformation. Model validation showed a good agreement between predicted temperature history and the experiment one, with a maximum error of 6%. Furthermore, the predicted formation of flash was also found in good agreement with the experiment with an error of only 7%. Simulation results predicted peak temperature and plastic strain among all studied welding conditions were 920 K and 3.5 respectively at 1200 rpm rotational speed, 20 mm/min plunging rate and 4 seconds dwell time, which is approximately 70% of the melting point of pure copper.


2018 ◽  
Vol 218 ◽  
pp. 04005
Author(s):  
Lingga Arti Saputra ◽  
Nurul Muhayat ◽  
Triyono

Global warming can be reduced by controlling emissions in motor vehicles. Lightweight aluminum materials can lower the engine work so as to reduce fuel consumption.The effect of dwell time on mechanical properties and microstructure friction stir spot welded AA1100 with particle interlayer Zn were investigated. The result shows that the particle interlayer Zn affect to the mechanical properties. The tensile shear load friction stir spot welded AA1100 with particle interlayer Zn is higher than hart of without particle interlayer Zn. In line with tensile shear load that the hardness of friction stir spot welded Al with particle interlayer Zn got the higher hardness than of without particle interlayer Zn. The addition of particle interlayer Zn reduce the hook defect and spread in the aluminum matrix as solid solution.


2020 ◽  
pp. 009524432096152
Author(s):  
Asil Ayaz ◽  
Aydin Ülker

In this study, a new method was proposed to reduce the keyhole volume with friction stir spot welding process and improve the lap joint shear load-carrying capacity of the weld by analyzing the effects of tool rotation speed, plunge depth and dwell time on the weld. Single lap shear tests were carried out to determine the influences of the welding parameters on the mechanical behavior of the welds. The quality of the joint was evaluated by examining the characteristics of the joint as a result of the lap joint shear load. For friction stir spot welding of the acrylonitrile butadiene styrene samples, the experiments were designed according to Taguchi’s L9 orthogonal array in a randomized way. From the analysis of variance and the signal-to-noise ratio, the significant parameters and the optimum combination level of the parameters were obtained. It was found that using a tool rotation of 1000 rpm, plunge depth 11.5 mm and dwell time of 40 s, an improved joint strength can be obtained. The results showed that joint strength was improved by an amount of 20% as compared with the optimum welding parameters to the initial welding parameters. Macrostructure examination plays an important role to determine the joint strength and evaluate the influences of each welding parameters. So, weld morphology was investigated by morphological analysis and visual comparisons. It was also observed failure modes for fractured samples having the highest, moderate and lowest lap joint shear load.


2019 ◽  
Vol 3 (2) ◽  
pp. 59
Author(s):  
Pathya Rupajati ◽  
Pathya Rupajati

Abstrak  Salah satu karakteristik sifat mekanis yang penting untuk dianalisis adalah tensile shear load. Penelitian ini bertujuan untuk melakukan optimasi tensile shear load hasil pengelasan micro friction stir welding (µFSSW) pada material AA1100 dan Cu1100P menggunakan metode Taguchi. Rancangan percobaan yang digunakan dalam penelitian ini adalah matriks orthogonal array L8 dengan memvariasikan parameter proses pengelasan yaitu dwell time dan plunge depth yang memiliki masing-masing empat level dan dua level. Sedangkan variabel konstan yang digunakan adalah tool rotational speed sebesar 33.000 rpm. Hasil penelitian menunjukkan bahwa parameter pengelasan yang memiliki kontribusi terbesar dalam meningkatkan tensile shear load hasil pengelasan micro friction stir spot welding adalah dwell time, yang menghasilkan tensile shear load sebesar 265,12 N dengan seting kombinasi dwell time pada 5 s dan plunge depth pada 0,7 mm. Hasil struktur mikro juga menunjukkan terlihat adanya flash dan hook defect, tetapi tidak menujukkan adanya intermetallic compound dan crack. Kata kunci: A1100, µFSSW, Taguchi, Dwell time, Plunge Depth


2021 ◽  
Vol 24 (2) ◽  
pp. 93-101
Author(s):  
Lingga Arti Saputra ◽  
Nota Ali Sukarno ◽  
Siti Zulaehah

Sambungan FSSW dengan material yang berbeda banyak digunakan pada kendaraan. Namun, masalah muncul ketika material tersebut tidak tersambung dengan sempurna. Penggunaan interlayer Zn mampu meningkatkan kemampuan sambungan. Variasi penggunaan dwell time dan diameter shoulder digunakan untuk memperjelas peranan interlayer electroplating Zn. Pengujian tarik geser yang telah dilakukan membuktikan bahwa penggunaan interlayer electroplating Zn memiliki kemampuan sambungan yang lebih baik. Nilai maksimal pengujian tarik geser sebesar 3.8 kN. Nilai maksimal sambungan tanpa interlayer elektroplating Zn 2.5 kN. Pengujian kekerasan menunjukkan nilai yang lebih besar 63 HV dari pada sambungan tanpa menggunakan interlayer elektroplating Zn. 


Author(s):  
Ahmed Mahgoub ◽  
Neçar Merah ◽  
Abdelaziz Bazoune

Abstract Friction Stir Spot Welding (FSSW) is a solid-state joining technique widely applied to high conductive metals. In this paper, the effects of FSSW parameters, namely, rotational speed (N), plunging rate (V) and dwell time (DT) on the joint fracture mode and fractured surface morphology were investigated using scanning electron microscopy (SEM). The effect of the abovementioned welding parameters on the microhardness profile along the sheets’ interface was also investigated to gain insight into the strength of the joint and the width of the bonding ligament. Two conditions were considered for each parameter 1200 rpm and 900 rpm for N, 60 mm/min and 20 mm/min for V, 4 and 2 seconds for DT. The welding condition 1200 rpm rotational speed, 20 mm/min plunging rate and 2 seconds dwell time showed a wider bonding ligament, relatively higher elongation, higher tensile failure load, and greater microhardness on the sheets’ interface. Dimple surface morphology (DSM) with regular dimples along the stir zone was also observed at the abovementioned set of process parameters.


Sign in / Sign up

Export Citation Format

Share Document