scholarly journals Data analytics using statistical methods and machine learning: a case study of power transfer units

Author(s):  
Sharmin Sultana Sheuly ◽  
Shaibal Barua ◽  
Shahina Begum ◽  
Mobyen Uddin Ahmed ◽  
Ekrem Güclü ◽  
...  

AbstractSensors can produce large amounts of data related to products, design, and materials; however, it is important to use the right data for the right purposes. Therefore, detailed analysis of data accumulated from different sensors in production and assembly manufacturing lines is necessary to minimize faulty products and understand the production process. Additionally, when selecting analytical methods, manufacturing companies must select the most suitable techniques. This paper presents a data analytics approach to extract useful information, such as important measurements for the dimensions of a shim, a small part for aligning shafts, from the manufacturing data of a power transfer unit (PTU). This paper also identifies the best techniques and analytical approaches within the following six individual areas: (1) identifying measurements associated with faults; (2) identifying measurements associated with shim dimensions; (3) identifying associations between station codes; (4) predicting shim dimensions; (5) identifying duplicate samples in faulty data; and (6) identifying error distributions associated with measurement. These areas are analysed in accordance with two analytical approaches: (a) statistical analysis and (b) machine learning (ML)-based analysis. The results show (a) the relative importance of measurements with regard to the faulty unit and shim dimensions, (b) the error distribution of measurements, and (c) the reproduction rate of faulty units. Additionally, both statistical analysis and ML-based analysis have shown that the measurement ‘PTU housing measurement’ is the most important measurement among available shim dimensions. Additionally, certain faulty stations correlated with one another. ML is shown to be the most suitable technique in three areas (e.g. identifying measurements associated with faults), while statistical analysis is sufficient for the other three areas (e.g. identifying measurements associated with shim dimensions) because they do not require a complex analytical model. This study provides a clearer understanding of assembly line production and identifies highly correlated and significant measurements of a faulty unit.

Data analytics has grown in a machine learning context. Whatever the reason data is used or exploited, customer segmentation or marketing targeting, it must be processed first and represented on feature vectors. Many algorithms, such as clustering, regression, classification, and others, need to be represented and clarified in order to facilitate processing and statistical analysis. If we have seen, through the previous chapters, the importance of big data analysis (the Why?), as with every major innovation, the biggest confusion lies in the exact scope (What?) and its implementation (How?). In this chapter, we will take a look at the different algorithms and techniques analytics that we can use in order to exploit the large amounts of data.


Author(s):  
Sadaf Qazi ◽  
Muhammad Usman

Background: Immunization is a significant public health intervention to reduce child mortality and morbidity. However, its coverage, in spite of free accessibility, is still very low in developing countries. One of the primary reasons for this low coverage is the lack of analysis and proper utilization of immunization data at various healthcare facilities. Purpose: In this paper, the existing machine learning based data analytics techniques have been reviewed critically to highlight the gaps where this high potential data could be exploited in a meaningful manner. Results: It has been revealed from our review, that the existing approaches use data analytics techniques without considering the complete complexity of Expanded Program on Immunization which includes the maintenance of cold chain systems, proper distribution of vaccine and quality of data captured at various healthcare facilities. Moreover, in developing countries, there is no centralized data repository where all data related to immunization is being gathered to perform analytics at various levels of granularities. Conclusion: We believe that the existing non-centralized immunization data with the right set of machine learning and Artificial Intelligence based techniques will not only improve the vaccination coverage but will also help in predicting the future trends and patterns of its coverage at different geographical locations.


Author(s):  
Rohan Pandey ◽  
Vaibhav Gautam ◽  
Ridam Pal ◽  
Harsh Bandhey ◽  
Lovedeep Singh Dhingra ◽  
...  

BACKGROUND The COVID-19 pandemic has uncovered the potential of digital misinformation in shaping the health of nations. The deluge of unverified information that spreads faster than the epidemic itself is an unprecedented phenomenon that has put millions of lives in danger. Mitigating this ‘Infodemic’ requires strong health messaging systems that are engaging, vernacular, scalable, effective and continuously learn the new patterns of misinformation. OBJECTIVE We created WashKaro, a multi-pronged intervention for mitigating misinformation through conversational AI, machine translation and natural language processing. WashKaro provides the right information matched against WHO guidelines through AI, and delivers it in the right format in local languages. METHODS We theorize (i) an NLP based AI engine that could continuously incorporate user feedback to improve relevance of information, (ii) bite sized audio in the local language to improve penetrance in a country with skewed gender literacy ratios, and (iii) conversational but interactive AI engagement with users towards an increased health awareness in the community. RESULTS A total of 5026 people who downloaded the app during the study window, among those 1545 were active users. Our study shows that 3.4 times more females engaged with the App in Hindi as compared to males, the relevance of AI-filtered news content doubled within 45 days of continuous machine learning, and the prudence of integrated AI chatbot “Satya” increased thus proving the usefulness of an mHealth platform to mitigate health misinformation. CONCLUSIONS We conclude that a multi-pronged machine learning application delivering vernacular bite-sized audios and conversational AI is an effective approach to mitigate health misinformation. CLINICALTRIAL Not Applicable


Author(s):  
William B. Rouse

This book discusses the use of models and interactive visualizations to explore designs of systems and policies in determining whether such designs would be effective. Executives and senior managers are very interested in what “data analytics” can do for them and, quite recently, what the prospects are for artificial intelligence and machine learning. They want to understand and then invest wisely. They are reasonably skeptical, having experienced overselling and under-delivery. They ask about reasonable and realistic expectations. Their concern is with the futurity of decisions they are currently entertaining. They cannot fully address this concern empirically. Thus, they need some way to make predictions. The problem is that one rarely can predict exactly what will happen, only what might happen. To overcome this limitation, executives can be provided predictions of possible futures and the conditions under which each scenario is likely to emerge. Models can help them to understand these possible futures. Most executives find such candor refreshing, perhaps even liberating. Their job becomes one of imagining and designing a portfolio of possible futures, assisted by interactive computational models. Understanding and managing uncertainty is central to their job. Indeed, doing this better than competitors is a hallmark of success. This book is intended to help them understand what fundamentally needs to be done, why it needs to be done, and how to do it. The hope is that readers will discuss this book and develop a “shared mental model” of computational modeling in the process, which will greatly enhance their chances of success.


Author(s):  
Khalifa Mohamed Khalifa Omar

The major objective of this study is to assess the financial performance and identify the affecting factors in this performance of non-oil manufacturing companies from 1999 to 2008. The study sample consisted of all non-oil manufacturing companies' enlisted at Libyan stock market which count (8). The data collected was analyzed by using statistical analysis method such as descriptive statistics, correlation test, Multiple- regression, as well as semi-structured interviews method. The results regarding to the statistical analysis method (net working capital, inventory turnover ratio, selling and general administrative expenses ratio, and company size and company age), have a positive statistical effect on the financial performance(ROA), while the variables of (current ratio, quick ratio and account receivable turnover ratio), have a negative statistical effect on the financial performance (ROA). The results regarding to semi-structured interviews method, reveal that the respondents in the interviews were confirmed that the selected factors have a significant effect on financial performance (ROA). The researcher recommended that the selected companies must consider the listed decision on the Libyan stock market; even when their financial performance is good.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Peter Hammond ◽  
Michael Suttie ◽  
Vaughan T. Lewis ◽  
Ashley P. Smith ◽  
Andrew C. Singer

AbstractMonitoring and regulating discharges of wastewater pollution in water bodies in England is the duty of the Environment Agency. Identification and reporting of pollution events from wastewater treatment plants is the duty of operators. Nevertheless, in 2018, over 400 sewage pollution incidents in England were reported by the public. We present novel pollution event reporting methodologies to identify likely untreated sewage spills from wastewater treatment plants. Daily effluent flow patterns at two wastewater treatment plants were supplemented by operator-reported incidents of untreated sewage discharges. Using machine learning, known spill events served as training data. The probability of correctly classifying a randomly selected pair of ‘spill’ and ‘no-spill’ effluent patterns was above 96%. Of 7160 days without operator-reported spills, 926 were classified as involving a ‘spill’. The analysis also suggests that both wastewater treatment plants made non-compliant discharges of untreated sewage between 2009 and 2020. This proof-of-principle use of machine learning to detect untreated wastewater discharges can help water companies identify malfunctioning treatment plants and inform agencies of unsatisfactory regulatory oversight. Real-time, open access flow and alarm data and analytical approaches will empower professional and citizen scientific scrutiny of the frequency and impact of untreated wastewater discharges, particularly those unreported by operators.


Sign in / Sign up

Export Citation Format

Share Document