Online monitoring of diamond grinding wheel wear based on linear discriminant analysis

Author(s):  
Guo Bi ◽  
Shouhong Zheng ◽  
Lian Zhou
2008 ◽  
Vol 392-394 ◽  
pp. 714-718 ◽  
Author(s):  
Bo Zhao ◽  
Bao Yu Du ◽  
W.D. Liu

In order to research the relationship between grinding wheel wear and the signal of grinding strength and grinding vibration, the grinding strength signal and grinding vibration signal under different wear condition were carried on digital processing by time-domain, frequency-domain, and wavelet-pocket analysis, and characteristic signal reflecting grinding wheel wear condition was obtained. Grinding wheel wear was monitored by time-domain statistics average value of grinding strength and energy value of three layers wavelet-pocket decomposition frequency band. The method how to set design parameters of neural network is introduced, and their value in condition monitoring network is determined. Mapping model of grinding wheel wear and characteristic signal is established. Recognition effect is satisfied in the experiment of grinding wheel wear condition monitoring. It confirmed the model is reliable and effective. The result shows that the new intelligent monitoring method is effective on monitoring grinding wheel deactivation condition. One new method of diamond grinding wheel wear condition monitoring under precision and ultra-precision grinding is introduced.


2015 ◽  
Vol 658 ◽  
pp. 120-124
Author(s):  
Tachai Luangvaranunt ◽  
Natthawat Tangkaratanakul ◽  
Patchanok Sakultantimetha

Diamond grinding wheel is used in high precision grinding process, when work piece has a very high hardness. For a specific grinding interval, the wheel must be properly dressed, in order to remove swarf, sharpen the worn diamond grits, open up new diamond protrusions, and recondition the bond material. Dressing of diamond grinding wheel by alumina dressing tool has been simulated in a pin-on-disk machine in the research. Sharpening of the wheel is indicated by the increase of its roughness value, and surface microstructure with protruding sharp diamond grits. It was found that increasing of sliding distant from 100 to 500 m will increase the roughness of the wheel. The increase of contact load from 10 to 20 N will also increase roughness of the wheel, and the severity of wheel wear, indicated by high values of friction coefficient. A proper dressing of this nickel bonded SD1200 diamond wheel is by sliding against alumina dressing tool for at least 300 m under 10 N load. Sliding velocity has minimal effect to the results. A too large sliding distant and load will cause severe damage to wheel surface, and severe wheel wear, indicated by its large mass loss.


2018 ◽  
Vol 108 (06) ◽  
pp. 448-453
Author(s):  
F. Vits ◽  
D. Trauth ◽  
P. Mattfeld ◽  
F. Klocke

Der Artikel beschreibt eine systematische Untersuchung des Verschleißes einer keramisch gebundenen Diamantschleifscheibe beim Schleifen von polykristallinem Diamant vom Typ CMX 850 bei variablen Prozesseingangsgrößen. Ein neu entwickelter Versuchsaufbau ermöglicht die Betrachtung eines fortschreitenden Schleifscheibenverschleißes auf mikroskopischer Skala und eine Erklärung der zugrundeliegenden Schleifscheibenverschleißmechanismen.   This Paper contains a systematic analysis of the wear of a vitrified bonded diamond grinding wheel in grinding of polycrystalline diamond CMX 850 with different process input variables. A newly developed test rig enables the observation of a continuous grinding wheel wear on a microscopic scale and an explanation of the underlying grinding wheel wear mechanisms.


2020 ◽  
Vol 16 (8) ◽  
pp. 1079-1087
Author(s):  
Jorgelina Z. Heredia ◽  
Carlos A. Moldes ◽  
Raúl A. Gil ◽  
José M. Camiña

Background: The elemental composition of maize grains depends on the soil, land and environment characteristics where the crop grows. These effects are important to evaluate the availability of nutrients with complex dynamics, such as the concentration of macro and micronutrients in soils, which can vary according to different topographies. There is available scarce information about the influence of topographic characteristics (upland and lowland) where culture is developed with the mineral composition of crop products, in the present case, maize seeds. On the other hand, the study of the topographic effect on crops using multivariate analysis tools has not been reported. Objective: This paper assesses the effect of topographic conditions on plants, analyzing the mineral profiles in maize seeds obtained in two land conditions: uplands and lowlands. Materials and Methods: The mineral profile was studied by microwave plasma atomic emission spectrometry. Samples were collected from lowlands and uplands of cultivable lands of the north-east of La Pampa province, Argentina. Results: Differentiation of maize seeds collected from both topographical areas was achieved by principal components analysis (PCA), cluster analysis (CA) and linear discriminant analysis (LDA). PCA model based on mineral profile allowed to differentiate seeds from upland and lowlands by the influence of Cr and Mg variables. A significant accumulation of Cr and Mg in seeds from lowlands was observed. Cluster analysis confirmed such grouping but also, linear discriminant analysis achieved a correct classification of both the crops, showing the effect of topography on elemental profile. Conclusions: Multi-elemental analysis combined with chemometric tools proved useful to assess the effect of topographic characteristics on crops.


Sign in / Sign up

Export Citation Format

Share Document