An intelligent control approach for defect-free friction stir welding

Author(s):  
Richard Cobos ◽  
Santiago D. Salas ◽  
Wilfredo Angulo ◽  
T. Warren Liao
2021 ◽  
Author(s):  
Richard Cobos ◽  
Santiago D. Salas ◽  
Wilfredo Angulo ◽  
T. Warren Liao

Abstract An intelligent control approach is proposed as an alternative for the friction stir welding of an aluminum alloy. A validated empirical model is re-written from transfer functions to a set of ordinary differential equations, allowing to observe the force dynamics as a function of inputs of interest. A defect-free set-point is proposed for exploiting available labeled experimental data which defines operational boundaries and a region in which the probability of achieving defect-free welds with good mechanical properties is the highest. An intelligent controller in the fashion of a Recurrent Neural Network is constructed. Computational experiments were carried out to verify the adequacy in disturbance rejection as well as to visualize the capabilities in achieving the proposed defect-free set-point by the controller. The intelligent approach is compared with a set of decoupled proportional-integral controllers and a linear model predictive control strategy. From this study it is concluded that the intelligent controller shows superiority and good applicability for the studied problem.


Author(s):  
Kulwant Singh ◽  
Gurbhinder Singh ◽  
Harmeet Singh

The weight reduction concept is most effective to reduce the emissions of greenhouse gases from vehicles, which also improves fuel efficiency. Amongst lightweight materials, magnesium alloys are attractive to the automotive sector as a structural material. Welding feasibility of magnesium alloys acts as an influential role in its usage for lightweight prospects. Friction stir welding (FSW) is an appropriate technique as compared to other welding techniques to join magnesium alloys. Field of friction stir welding is emerging in the current scenario. The friction stir welding technique has been selected to weld AZ91 magnesium alloys in the current research work. The microstructure and mechanical characteristics of the produced FSW butt joints have been investigated. Further, the influence of post welding heat treatment (at 260 °C for 1 h) on these properties has also been examined. Post welding heat treatment (PWHT) resulted in the improvement of the grain structure of weld zones which affected the mechanical performance of the joints. After heat treatment, the tensile strength and elongation of the joint increased by 12.6 % and 31.9 % respectively. It is proven that after PWHT, the microhardness of the stir zone reduced and a comparatively smoothened microhardness profile of the FSW joint obtained. No considerable variation in the location of the tensile fracture was witnessed after PWHT. The results show that the impact toughness of the weld joints further decreases after post welding heat treatment.


Author(s):  
Daniela Lohwasser ◽  
Zhan Chen

Sign in / Sign up

Export Citation Format

Share Document