scholarly journals Optimisation of cutting fluid concentration and operating parameters based on RSM for turning Ti–6Al–4V

Author(s):  
Salah Gariani ◽  
Mahmoud Ahmed El-Sayed ◽  
Islam Shyha

AbstractThe paper details experimental and optimisation results for the effect of cutting fluid concentration and operating parameters on the average surface roughness (Ra) and tool flank wear (VB) when flooded turning of Ti-6Al-4V using water-miscible vegetable oil-based cutting fluid. Cutting fluid concentration, cutting speed, feed rate, and cutting tool were the control variables. Response surface methodology (RSM) was employed to develop an experimental design and optimise Ra and VB using linear models. The study revealed that cutting fluid concentration has a little influence on Ra and VB performance, while Ra was strongly affected by feed rate and cutting tool type. The developed empirical model also suggested that the best parameters setting to minimise Ra and VB are 5%, 58 m/min and 0.1 mm/rev for cutting fluid concentration, cutting speed, and feed rate, respectively, using H13A tool. At this setting, the predicted surface roughness and tool wear were 0.48 and 30 μm, respectively. In the same vein, tool life and micro-hardness tests were performed at the suggested optimum cutting condition with different cutting speeds. A notable decrease in tool life (82.3%) was obtained when a higher cutting speed was used.

2021 ◽  
Author(s):  
Salah Gariani ◽  
Mahmoud Elsayed ◽  
Islam Shyha

Abstract The paper details experimental and optimisation results for the effect of cutting fluid concentration and operating parameters on the average surface roughness (Ra) and tool flank wear (VB) when flooded turning of Ti-6Al-4V using water-miscible vegetable oil-based cutting fluid. Cutting fluid concentration, cutting speed, feed rate and cutting tool were the control variables. Response Surface Methodology (RSM) was employed to develop an experimental design and optimise Ra and VB using linear models. The study revealed that cutting fluid concentration has a little influence on Ra and VB performance while Ra was strongly affected by feed rate and cutting tool type. The developed empirical model also suggested that the best parameters setting to minimise Ra and VB are 5%, 58 m/min, 0.1 mm/rev for cutting fluid concentration, cutting speed and feed rate, respectively, using H13A tool. At this setting, the predicted surface roughness and tool wear were 0.48 and 30 µm, respectively. In the same vein, tool life and micro-hardness tests were performed at the suggested optimum cutting condition with different cutting speeds. A notable decrease in tool life (82.3%) was obtained when a higher cutting speed was used.


2019 ◽  
Vol 947 ◽  
pp. 160-166
Author(s):  
Nutrada Khumjeen ◽  
Somkiat Tangjitsitcharoen

The turning Process is the main processes used in automotive parts from more productivity, it requires the cutting velocity and feed rate high. And from those cutting, it causes high temperatures on cutting and a tool life of cutting tools decreased. Therefore using of cutting fluid (Coolant) is one of the commonly used methods to reduce temperatures that occur while cutting, reducing the wear of cutting tool and helps extend the tool life of the cutting tool. However, cutting fluid it's not always a good way, from the high cost and environmental problems issues. Using the MQL technique is one of the alternatives that using more nowadays to solve the above mentioned problems. This research proposed a MQL technique substitution of cutting fluid that using in the current process by applying in order to obtain the proper cutting condition for carbon steel material grade SAPH370 with the carbide cutting tool. The cutting conditions will acceptable from the minimum quantity of lubricant and the maximum of tool life of cutting tool under surface roughness (Ra) is less than 1.2 μm. The proper cutting condition determined at a feed rate of 0.10 mm/rev, a cutting speed of 300 m/min and a flow rate of 5ml/hr.


Minimum quantity lubrication (MQL) is an eco-friendly method, where a small amount of fluid was sprayed to cutting edge in mist form with the aid of the air. The foregoing studies revealed that inappropriate machining parameters without the assistance of the cutting fluid methods became a major challenge in milling aluminum alloy 7075-T6. The paper presents the findings of the experimental work to assess the effect of machining parameters towards cutting tool life and machined surface roughness in milling aluminum alloy 7075-T6 at high cutting speed under MQL condition. An eight-run experiment was designed according to full factorial design based upon two levels of cutting speed (500 m/min, 600 m/min), feed rate (0.12 mm/tooth, 0.15 mm/tooth), and axial depth of cut (1.40 mm, 1.70 mm) and then analyzed employed ANOVA to determine the significant machining parameters. The cutting tool life and machined surface roughness were assigned by the rejection criterion of tool flank wear in the milling operation. The optical microscope and portable surface roughness tester were applied to analyze tool wear and average surface roughness value. Cutting speed and feed rate were significantly contributing to the tool life and surface roughness. The longest tool lifespan of 20.14 minutes and lowest surface roughness value of 0.569 µm were obtained at a speed of 500 and 600 m/min, respectively, with a low combination of the rest of parameter which are 0.12 mm/tooth and 1.40 mm.


2017 ◽  
Vol 882 ◽  
pp. 36-40
Author(s):  
Salah Gariani ◽  
Islam Shyha ◽  
Connor Jackson ◽  
Fawad Inam

This paper details experimental results when turning Ti-6Al-4V using water-miscible vegetable oil-based cutting fluid. The effects of coolant concentration and working conditions on tool flank wear and tool life were evaluated. L27 fractional factorial Taguchi array was employed. Tool wear (VBB) ranged between 28.8 and 110 µm. The study concluded that a combination of VOs based cutting fluid concentration (10%), low cutting speed (58 m/min), feed rate (0.1mm/rev) and depth of cut (0.75mm) is necessary to minimise VBB. Additionally, it is noted that tool wear was significantly affected by cutting speeds. ANOVA results showed that the cutting fluid concentration is statistically insignificant on tool flank wear. A notable increase in tool life (TL) was recorded when a lower cutting speed was used.


Author(s):  
Brian Boswell ◽  
Mohammad Nazrul Islam ◽  
Ian J Davies ◽  
Alokesh Pramanik

The machining of aerospace materials, such as metal matrix composites, introduces an additional challenge compared with traditional machining operations because of the presence of a reinforcement phase (e.g. ceramic particles or whiskers). This reinforcement phase decreases the thermal conductivity of the workpiece, thus, increasing the tool interface temperature and, consequently, reducing the tool life. Determining the optimum machining parameters is vital to maximising tool life and producing parts with the desired quality. By measuring the surface finish, the authors investigated the influence that the three major cutting parameters (cutting speed (50–150 m/min), feed rate (0.10–0.30 mm/rev) and depth of cut (1.0–2.0 mm)) have on tool life. End milling of a boron carbide particle-reinforced aluminium alloy was conducted under dry cutting conditions. The main result showed that contrary to the expectations for traditional machined alloys, the surface finish of the metal matrix composite examined in this work generally improved with increasing feed rate. The resulting surface roughness (arithmetic average) varied between 1.15 and 5.64 μm, with the minimum surface roughness achieved with the machining conditions of a cutting speed of 100 m/min, feed rate of 0.30 mm/rev and depth of cut of 1.0 mm. Another important result was the presence of surface microcracks in all specimens examined by electron microscopy irrespective of the machining condition or surface roughness.


2020 ◽  
Vol 22 (4) ◽  
pp. 41-53
Author(s):  
Manojkumar Sheladiya ◽  
◽  
Shailee Acharya ◽  
Ghanshyam Acharya ◽  
◽  
...  

Introduction. The machinability is typical criteria to be investigated and different authors suggested different parameters describing its quantification. Different parameters i. e. speed, feed, depth of cut, tool work-piece combination, machine types and its condition, cutting fluid, machinist expertise, etc. are contributing directly to the tool life. The selection of the tool for the machining impacts greatly on the economic viability of the machining in terms of energy usage and tooling costs. The method of investigation. The current research emphasis mainly on tool life investigation when machining the mild steel specimens ISRO 50, BIS 1732:1989 at constant cutting speed i.e. 200 m / min. In the industries the mild steel material is commonly used for various products manufacturing. Considering the high demands on productivity and surface finish, machining at 200 m / min is the preferred. The computerized numerical control machine (CNC DX-150) is used for the turning. The four corner insert (TNMG 120408) is used for different machining times i.e. 10, 15, 20 and 25 minutes respectively. The flank wear of the tool is measured with calibrated optical microscope. The temperature of the tool corner during machining is continuously measured for possible impact of temperature on bonding properties of the tool insert and impact on red hardness. Results and discussion. The plot of flank wear vs. machining time will give the value of tool life. The other quality output parameter, such as surface roughness, is measured after machining, indicating surface irregularities in root means square value. Efforts have been made to identify the relationship of tool life, machining time, the quantity of metal removed, surface roughness, and tool bit temperature.


2020 ◽  
Vol 17 (2) ◽  
pp. 961-966
Author(s):  
Allina Abdullah ◽  
Afiqah Azman ◽  
B. M. Khirulrizwan

This research outlines an experimental study to determine the optimum parameter of cutting tool for the best surface roughness (Ra) of Aluminum Alloy (AA) 6063. For the experiment in this research, cutting parameters such as cutting speed, depth of cut and feed rate are used to identify the effect of both cutting tools which are tungsten carbide and cermet towards the surface roughness (Ra) of material AA6063. The machining operation involved to cut the material is turning process by using Computer Numerical Control (CNC) Lathe machine. The experimental design was designed by Full Factorial. The experiment that had been conducted by the researcher is 33 with 2 replications. The total number of the experiments that had been run is 54 runs for each cutting tool. Thus, the total number of experiments for both cutting tools is 108 runs. ANOVA analysis had been analyzed to identify the significant factor that affect the Ra result. The significant factors that affect the Ra result of AA6063 are feed rate and cutting speed. The researcher used main effect plot to determine the factor that most influenced the surface roughness of AA6063, the optimum condition of surface roughness and the optimum parameter of cutting tool. The factor that most influenced the surface roughness of AA6063 is feed rate. The optimum condition of surface roughness is at the feed rate of 0.05 mm/rev, cutting speed of 600 rpm and depth of cut of 0.10 mm. While the optimum parameter of cutting tool is cermet insert with the lowest value of surface roughness (Ra) result which is 0.650 μm.


Author(s):  
Rusdi Nur ◽  
MY Noordin ◽  
S Izman ◽  
D Kurniawan

Austenitic stainless steel AISI 316L is used in many applications, including chemical industry, nuclear power plants, and medical devices, because of its high mechanical properties and corrosion resistance. Machinability study on the stainless steel is of interest. Toward sustainable manufacturing, this study also includes the power consumption during machining along with other machining responses of cutting force, surface roughness, and tool life. Turning on the stainless steel was performed using coated carbide tool without using cutting fluid. The turning was performed at various cutting speeds (90, 150, and 210 m/min) and feeds (0.10, 0.16, and 0.22 mm/rev). Response surface methodology was adopted in designing the experiments to quantify the effect of cutting speed and feed on the machining responses. It was found that cutting speed was proportional to power consumption and was inversely proportional to tool life, and showed no significant effect on the cutting force and the surface roughness. Feed was proportional to cutting force, power consumption, and surface roughness and was inversely proportional to tool life. Empirical equations developed from the results for all machining responses were shown to be useful in determining the optimum cutting parameters range.


2017 ◽  
Vol 889 ◽  
pp. 152-158
Author(s):  
K. Kadirgama ◽  
K. Abou-El-Hossein

Stainless steel was used for many engineering applications. The optimum parameters needs to be identify to save the cutting tool usage and increase productivity. The purpose of this study is to develop the surface roughness mathematical model for AISI 304 stainless steel when milling using TiN (CVD) carbide tool. The milling process was done under various cutting condition which is cutting speed (1500, 2000 and 2500 rpm), feed rate (0.02, 0.03 and 0.04 mm/tooth) and axial depth (0.1, 0.2 and 0.3 mm). The first order model and quadratic model have been developed using Response Surface Method (RSM) with confident level 95%. The prediction models were comparing with the actual experimental results. It is found that quadratic model much fit the experimental result compare to linear model. In general, the results obtained from the mathematical models were in good agreement with those obtained from the machining experiments. Besides that, it is shown that the influence of cutting speed and feed rate are much higher on surface roughness compare to depth of cut. The optimum cutting speed, feed rate and axial depth is 2500 rpm, 0.0212 mm/tooth and 0.3mm respectively. Besides that, continues chip is produced at cutting speed 2500 rpm meanwhile discontinues chip produced at cutting speed 1500 rpm.


2021 ◽  
Vol 27 (1) ◽  
pp. 30-35
Author(s):  
Youcef Abidi

Abstract Tool wear and surface roughness as performance indexes are considered to be the most important in terms of hardened materials’ machinability. The best combination of cutting parameters which enhances the compromise between tool life, productivity and machined surface quality contribute to benefice on production cost, which makes manufacturing industry interested in it. The aim of this research is to investigate the life of ceramic cutting tool and machining productivity together with surface roughness during turning of hardened steel C45, with focus on the selection of the optimal cutting parameter combination. The experiments are carried out based on uni-factorial planning methodology of cutting speeds and feed rates. The results show that the mixed ceramic tool is suitable for turning hardened steel C45 (40 HRC) and the conclusion is that it performed well in terms of tool life, productivity and surface quality at a combination of cutting speed (200 m/min), feed (0.08 mm/rev) and depth of cut (0.3 mm). Additionally, a tool life model has been proposed which is presented very high coefficient of determination.


Sign in / Sign up

Export Citation Format

Share Document