Tool Life Analysis when Turning Ti-6Al-4V Using Vegetable Oil-Based Cutting Fluid

2017 ◽  
Vol 882 ◽  
pp. 36-40
Author(s):  
Salah Gariani ◽  
Islam Shyha ◽  
Connor Jackson ◽  
Fawad Inam

This paper details experimental results when turning Ti-6Al-4V using water-miscible vegetable oil-based cutting fluid. The effects of coolant concentration and working conditions on tool flank wear and tool life were evaluated. L27 fractional factorial Taguchi array was employed. Tool wear (VBB) ranged between 28.8 and 110 µm. The study concluded that a combination of VOs based cutting fluid concentration (10%), low cutting speed (58 m/min), feed rate (0.1mm/rev) and depth of cut (0.75mm) is necessary to minimise VBB. Additionally, it is noted that tool wear was significantly affected by cutting speeds. ANOVA results showed that the cutting fluid concentration is statistically insignificant on tool flank wear. A notable increase in tool life (TL) was recorded when a lower cutting speed was used.

2010 ◽  
Vol 26-28 ◽  
pp. 1052-1055
Author(s):  
Li Fa Han ◽  
Sheng Guan Qu

The wear characteristics and life of Al2O3/(W,Ti)C ceramic tool in turning NbCp-reinforced iron-based P/M composites was investigated. Experimental results indicate that cutting parameters have an influence on tool wear, among which cutting speed and depth of cut seem to be more prominent. The maximum flank wear rapidly increases as the increase in cutting speed and depth of cut. While, it increases gradually as the decrease in feed rate. Meanwhile, an empirical model of tool life is established, from which the influence of cutting speed and depth of cut on tool life is far greater than that of feed rate. Also from the empirical model, the preferable range of cutting parameters was obtained.


2020 ◽  
Vol 22 (4) ◽  
pp. 41-53
Author(s):  
Manojkumar Sheladiya ◽  
◽  
Shailee Acharya ◽  
Ghanshyam Acharya ◽  
◽  
...  

Introduction. The machinability is typical criteria to be investigated and different authors suggested different parameters describing its quantification. Different parameters i. e. speed, feed, depth of cut, tool work-piece combination, machine types and its condition, cutting fluid, machinist expertise, etc. are contributing directly to the tool life. The selection of the tool for the machining impacts greatly on the economic viability of the machining in terms of energy usage and tooling costs. The method of investigation. The current research emphasis mainly on tool life investigation when machining the mild steel specimens ISRO 50, BIS 1732:1989 at constant cutting speed i.e. 200 m / min. In the industries the mild steel material is commonly used for various products manufacturing. Considering the high demands on productivity and surface finish, machining at 200 m / min is the preferred. The computerized numerical control machine (CNC DX-150) is used for the turning. The four corner insert (TNMG 120408) is used for different machining times i.e. 10, 15, 20 and 25 minutes respectively. The flank wear of the tool is measured with calibrated optical microscope. The temperature of the tool corner during machining is continuously measured for possible impact of temperature on bonding properties of the tool insert and impact on red hardness. Results and discussion. The plot of flank wear vs. machining time will give the value of tool life. The other quality output parameter, such as surface roughness, is measured after machining, indicating surface irregularities in root means square value. Efforts have been made to identify the relationship of tool life, machining time, the quantity of metal removed, surface roughness, and tool bit temperature.


Author(s):  
Rosemar Batista da Silva ◽  
Álisson Rocha Machado ◽  
Déborah de Oliveira Almeida ◽  
Emmanuel O. Ezugwu

The study of cutting fluid performance in turning is of great importance because its optimization characteristics has associated benefits such as improved tool life and overall quality of machined components as well as reduction in power consumption during machining. However, there are recent concerns with the use of cutting fluids from the environmental and health standpoints. Since environmental legislation has become more rigorous, the option for “green machining” attracts the interest of several manufacturing companies. It is important to consider the cost of machining which is associated with tool wear, depending on the cutting environment. The use of vegetable oil may be an interesting alternative to minimize the health and environmental problems associated with cutting fluids without compromising machining performance. This paper presents a comparative study of mineral and vegetable cutting fluids in terms of tool wear after turning SAE 1050 steel grade with cemented carbide cutting tools. Constant depth of cut of 2mm and variable cutting speed (200 and 350 m/min) and feed rate (0.20 and 0.32 mm/rev) were employed. Test results suggest that is possible to achieve improvement in machinability of the material and increase tool life by using vegetable cutting fluid during machining. Tool life increased by about 85% when machining with vegetable-based fluids compared to mineral-based fluids. Analysis of the worn tools, however, revealed a more uniform wear on the worn flank face when machining with mineral-based fluids.


Author(s):  
Jay Airao ◽  
Hreetabh Kishore ◽  
Chandrakant Kumar Nirala

Abstract The characteristics such as high hardness and shear modulus, low thermal conductivity, strain hardening of Nickel-based superalloys lead to high machining forces and temperature, poor surface quality and integrity, rapid tool wear, etc. The present article investigates the tool wear mechanism of the tungsten carbide (WC) tool in µ-turning of Nimonic 90 under dry, wet, and vegetable oil-based cutting fluid (VCF). Canola oil is used as vegetable oil. Three different combinations of cutting speed, feed rate, and depth of cut are considered for analysis. The tool wear is characterized using optical and scanning electron microscopy. Machining with VCF shows an approximate reduction of flank wear width in the range of 12%-52% compared to dry and wet conditions. The main wear mechanisms observed on the tool flank and rake face are abrasion, built-up edge adhesion, and edge chipping. The VCF considerably reduces the adhesion and abrasion and, hence, increases tool life. The chips produced in dry conditions are found fractured and uneven, whereas, it had an uneven lamella structure in wet conditions. The VCF found reducing the plastic deformation in each cutting condition, as a result, producing fine lamella structured chips.


Author(s):  
W. Li ◽  
Y. B. Guo ◽  
M. E. Barkey

In machining, the interfacial friction between cutting tool and work material leads to tool wear which is considered a critical factor for surface quality of machined components. Surface integrity and fatigue life of machined components will deteriorate when tool flank wear progresses in machining. Hard milling experiments on AISI H13 tool steel (50 ± 1 HRC) using PVD coated tools with different levels of flank wear were conducted in this study. Surface integrity of the machined components with flank wear VB = 0 mm, 0.1 mm and 0.2 mm was characterized. The effects of cutting speed, feed, and radial depth-of-cut on surface integrity were investigated respectively at the three levels of tool flank wear. In addition, four-point bending fatigue tests were performed on the milled samples at five levels of different flank wear (VB = 0, 0.05, 0.10, 0.15, 0.20 mm) to evaluate the trend of fatigue life evolution with the increased tool flank wear.


2019 ◽  
Vol 26 (08) ◽  
pp. 1850230
Author(s):  
A. AKHAVAN FARID ◽  
MOHAMMAD LOTFI ◽  
M. JAHANBAKHSH

Long tool life and high material removal rate (MRR) are the two essential requirements in rough cutting of materials. The rapid rate of the flank wear propagation in machining of nickel-based superalloys has induced the utilization of low cutting parameters when the goal was set to maximize the tool life based on the machining time or cutting length. However, this method may not provide an effective rate for the material being cut. This work presents two mathematical models to find the optimum cutting parameters results for the minimum flank wear and maximum MRR. Experimental tests were carried out based on the central composite design (CCD) in rough cutting of Inconel 625 by using TiAlN-coated insert. Maximum flank wear was measured to determine the tool wear propagation. The wear mechanisms which contribute in the tool wear were analyzed by using scanning electron microscope (SEM) to evaluate the effects of cutting parameters on the flank wear propagation. The results showed that cutting speed and depth of cut had the most significant effect on the tool wear. However, optimum cutting condition was achieved by reducing the cutting speed when feed rate and depth of cut maintained at the highest level. This was associated to the interaction of cutting speed and depth of cut, and predominant of abrasion and notching at their highest levels, respectively.


Author(s):  
R. Kumar ◽  
A.K. Sahoo ◽  
P.C. Mishra ◽  
R.K. Das

The present paper emphasizes on experimental investigation, mathematical modelling, optimisation, tool life and cost analysis during machining of AISI D2 (heat treated) (55±1 HRC) steel using uncoated carbide tool through a novel method under spray impingement cooling environment. Taguchi based L16 orthogonal array was utilised to conduct the experiments. Analysis of variance with 95% confidence level shows that the feed and depth of cut, are the most compelling factor towards surface roughness as well as chip reduction coefficient whereas cutting speed is the utmost compelling feature associated to flank wear as well as chip-tool interface temperature. Optimised result is identified as v1-f1-d1 (machining speed of 63 m/min; cutting feed of 0.04 mm/rev and depth of cut of 0.1 mm) based on grey relational analysis and tool life is found to be 15 minutes at optimised cutting conditions. Flank wear due to abrasion, catastrophic failure due to diffusion, chipping and notch wear are noticed as the major tool wear mechanisms in hard turning. Mathematical machinability models show statistically significance because due to the superior coefficient of correlations. As the global machining cost for each part is less, uncoated carbide tools can machine effectively, efficiently and economically at optimum cutting conditions under spray environment.


2021 ◽  
Author(s):  
Vinothkumar Sivalingam ◽  
Ganeshkumar Poogavanam ◽  
Yuvaraj Natarajan ◽  
Jie Sun

Abstract Atomized spray cutting fluid (ASCF) is a sophisticated machining technique that achieves higher productivity, enhanced surface quality, extended tool life, and cost benefits. This research aims to analyze the influence of cutting process parameters on Inconel 718 alloy turning in dry and ASCF cutting environments. The critical machining indices such as surface roughness, machining cost, power consumption, and tool life were analyzed concerning these two cooling environments. The cutting parameters were optimized using desirability functional analysis and two types of multicriteria decision making (MCDM) method, such as additive ratio assessment method (ARAS) and combinative distance-based assessment (CODAS) method, were investigated. The composite desirability index (CD) of optimum parameter setting(A2B1C2D2) is improved by 6.34 % compared to the initial parameter setting (A2B1C2D1). The optimum parameters from the MCDM technique are obtained as a cutting speed of 200 m/min, feed rate of 0.08 mm/rev, and depth of cut of 0.2 mm under ASCF environment. ASCF machining significantly minimize the surface roughness, machining cost and power consumption, maximize the tool life by about 16%, 51%, 17% and 48% respectively as compared with dry machining


2019 ◽  
Vol 18 (04) ◽  
pp. 625-655 ◽  
Author(s):  
Asutosh Panda ◽  
Sudhansu Ranjan Das ◽  
Debabrata Dhupal

The present study addresses the machinability investigation in finish dry hard turning of high strength low alloy steel with coated ceramic tool by considering cutting speed, feed and depth of cut as machining parameters. The technological parameters like surface roughness, flank wear, chip morphology and economical feasibility have been considered to investigate the machinability performances. Twenty seven set of trials according to full factorial design of experiments are performed and analysis of variance, multiple regression method, Taguchi method, desirability function approach and finally Gilbert’s approach are subsequently applied for parametric influence study, mathematical modeling, multi-response optimization, tool life estimation and economic analysis. Results indicated that feed and cutting speed are the most significant controlled as well as dominant factors for hard turning operation if the minimization of the machined surface roughness and tool flank wear is considered. Abrasions, adhesion followed by plastic deformation have been observed to be the principal wear mechanism for tool life estimation and observed tool life for coated ceramic insert is 47[Formula: see text]min under optimum cutting conditions. The total machining cost per part is ensued to be lower ($0.29 only) as a consequence of higher tool life, reduction in downtime and enhancement in savings, which finds economical benefits in hard turning. The current work demonstrates the substitution of conventional, expensive and slow cylindrical grinding process, and proposes the most expensive CBN tool alternative using coated ceramic tools in hard turning process considering techno-economical and ecological aspects.


Author(s):  
Sunil Dutta ◽  
Suresh Kumar Reddy Narala

In this paper, the machinability of a fabricated AM alloy (Mg-7 wt%Al-0.9 wt%Mn) has been examined. The novel AM alloy was subjected to turning using a systemized CNC setup. The input turning variables: feed ( f), cutting speed ( v), and depth of cut (DOC) were suitably altered to analyze effects on response variables such as cutting force ( Fc), cutting temperature ( T), and tool life ( TL). Subsequently, the microstructure characterization of the machined surface was done for validating the experimental results. The experimental results established the influence of input parameters on response variables. The cutting force was mostly dominated by DOC, and the cutting temperature was predominantly influenced by cutting speed. The SEM images exhibited the adverse effect of higher values of input parameters on the surface condition. The finest surface was observed at f: 0.1 mm/rev, DOC: 0.5 mm, and v: 115 m/min. Further, the analysis of tool life was done by assessing the flank wear; the measured data showed the significant influence of cutting speed on flank wear. The maximum tool life of 51 min was achieved at the lowest levels of three input parameters.


Sign in / Sign up

Export Citation Format

Share Document