The effect of an unsteady drag force on the structure of a non-equilibrium region behind a shock wave in a gas-particle mixture

Shock Waves ◽  
2007 ◽  
Vol 17 (4) ◽  
pp. 255-262 ◽  
Author(s):  
T. Saito ◽  
M. Saba ◽  
M. Sun ◽  
K. Takayama
2014 ◽  
Vol 744 ◽  
pp. 5-37 ◽  
Author(s):  
P. C. Valente ◽  
J. C. Vassilicos

AbstractThe previously reported non-equilibrium dissipation law is investigated in turbulent flows generated by various regular and fractal square grids. The flows are documented in terms of various turbulent profiles which reveal their differences. In spite of significant inhomogeneity and anisotropy differences, the new non-equilibrium dissipation law is observed in all of these flows. Various transverse and longitudinal integral scales are measured and used to define the dissipation coefficient $C_{\varepsilon }$. It is found that the new non-equilibrium dissipation law is not an artefact of a particular choice of the integral scale and that the usual equilibrium dissipation law can actually coexist with the non-equilibrium law in different regions of the same flow.


Author(s):  
Ye Tian ◽  
Wei Huang ◽  
Pengfei Li ◽  
Simin Cao ◽  
Yan Sun

Bubble departure diameter has significant effect on bubble dynamics and heat transfer in boiling system, and it is difficult to be measured in a boiling system. Therefore, a method to predict bubble departure diameter is necessary to study of bubble dynamics and heat transfer in boiling system. A new theoretical model based on force analysis is proposed for the prediction of bubble departure diameter in vertical boiling system in this paper. Surface tension force, unsteady drag force, quasi-steady drag force, shear lift force, buoyancy force, hydrodynamic pressure force and contact pressure force are taken into account to build the model. Chen’s experimental data is used to validate the model, the averaged relative deviation between the predict results of the model and the experimental data is less than ±14.8%.


Sign in / Sign up

Export Citation Format

Share Document