Type 2 diabetes is associated with higher trabecular bone density but lower cortical bone density: the Vietnam Osteoporosis Study

2018 ◽  
Vol 29 (9) ◽  
pp. 2059-2067 ◽  
Author(s):  
L.T. Ho-Pham ◽  
P.M.N. Chau ◽  
A.T. Do ◽  
H.C. Nguyen ◽  
T.V. Nguyen
Bone ◽  
2009 ◽  
Vol 45 ◽  
pp. S55-S56
Author(s):  
C. Holroyd ◽  
P. Taylor ◽  
C. Rivett ◽  
K. Jameson ◽  
C. Cooper ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1630-1630
Author(s):  
Matteo Cesari ◽  
Marco Pahor ◽  
Fulvio Lauretani ◽  
Brenda W.H.J. Penninx ◽  
Benedetta Bartali ◽  
...  

Abstract Background: Hypoxemia has been recognized as a risk factor for bone loss. The aim of the present study is to investigate the relationship of anemia and hemoglobin levels with bone mass and density measures in a large sample of older community-dwelling persons. Methods: The present study is based on data from 950 participants enrolled in the “Invecchiare in Chianti” (Aging in the Chianti area, InCHIANTI) study. All the analyses were performed considering continuous hemoglobin levels as well as the dichotomous anemia variable (defined according to WHO criteria as hemoglobin <12 g/dL in women and <13 g/dL in men). A peripheral quantitative computerized tomography (pQCT) scan of the right calf was performed in all participants to evaluate total bone density, trabecular bone density, cortical bone density, and the ratio between cortical and total bone area. Linear regression analyses were used to assess the multivariate relationship of pQCT bone measures with anemia and hemoglobin levels after adjustment for demographics, chronic conditions, muscle strength and biological variables. Results: Participants were 75.0 (SD 6.9) years old. In our sample, 101 participants (10.6%) were anemic. In women, coefficients from adjusted linear regression analyses evaluating the association between pQCT bone measures (per SD increase) and hemoglobin levels/anemia showed significant associations of anemia with total bone density (ß=−0.335, SE=0.163; p=0.04), and cortical bone density (ß=−0.428, SE=0.160; p=0.008). Relationships with borderline significance were found for the associations of anemia with trabecular bone density and the ratio between cortical and total bone area. Significant associations were found between hemoglobin levels and trabecular bone density (ß=0.112, SE=0.049; p=0.02), total bone density (ß=0.101, SE=0.046; p=0.03), cortical bone density (ß=0.100, SE=0.046; p=0.03), and the ratio between cortical bone and total area (ß=0.092, SE=0.045; p=0.04). In men, significant associations were found for the associations of hemoglobin levels with total bone density (ß=0.076, SE=0.036; p=0.03) and cortical bone density (ß=0.095, SE= 0.41; p=0.02). A borderline significance was reported for the association between anemia and cortical bone density. Conclusion: Anemia and low hemoglobin levels are negatively and independently associated with bone mass and density. The bone loss associated with hemoglobin levels mainly occurs in the cortical bone. Women with lower hemoglobin levels demonstrate a higher bone loss than men.


2010 ◽  
Vol 21 (12) ◽  
pp. 2093-2099 ◽  
Author(s):  
C. R. Holroyd ◽  
J. H. Davies ◽  
P. Taylor ◽  
K. Jameson ◽  
C. Rivett ◽  
...  

2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 825.2-826
Author(s):  
M. Jansen ◽  
A. Ooms ◽  
T. D. Turmezei ◽  
J. W. Mackay ◽  
S. Mastbergen ◽  
...  

Background:In addition to cartilage degeneration, knee osteoarthritis (OA) causes bone changes, including cortical bone thickening, subchondral bone density decrease, and bone shape changes as a result of widening and flattening condyles and osteophyte formation. Knee joint distraction (KJD) is a joint-preserving treatment for younger (<65 years) knee OA patients that has been shown to reverse OA cartilage degradation. On radiographs, KJD showed a decrease in subchondral bone density and an increase in osteophyte formation. However, these bone changes have never been evaluated with a 3D imaging technique.Objectives:To evaluate cortical bone thickness, subchondral trabecular bone density, and bone shape on CT scans before and one year after KJD treatment.Methods:19 KJD patients were included in an extended imaging protocol, undergoing a CT scan before and one year after treatment. Stradview v6.0 was used for semi-automatic tibia and femur segmentation from axial thin-slice (0.45mm) CT scans. Cortical bone thickness (mm) and trabecular bone density (Hounsfield units, HU) were measured with an automated algorithm. Osteophytes were excluded. Afterwards, wxRegSurf v18 was used for surface registration. Registration data was used for bone shape measurements. MATLAB R2020a and the SurfStat MATLAB package were used for data analysis and visualization. Two-tailed F-tests were used to calculate changes over time. Two separate linear regression models were used to show the influence of baseline Kellgren-Lawrence grade and sex on the changes over time. Statistical significance was calculated with statistical parametric mapping; a p-value <0.05 was considered statistically significant. Bone shape changes were explored visually using vertex by vertex displacements between baseline and follow-up. Patients were separated into two groups based on whether their most affected compartment (MAC) was medial or lateral. Only patients with axial CT scans at both time points available for analysis were included for evaluation.Results:3 Patients did not have complete CTs and in 1 patient the imaged femur was too short, leaving 16 patients for tibial analyses and 15 patients for femoral analyses. The MAC was predominantly the medial side (medial MAC n=14; lateral n=2). Before treatment, the MAC cortical bone was compared to the rest of the joint (Figure 1). One year after treatment, MAC cortical thickness decreased, although this decrease of up to approximately 0.25 mm was not statistically significant. The trabecular bone density was also higher before treatment in the MAC, and a decrease was seen throughout the entire joint, although statistically significant only for small areas on mostly the MAC where this decrease was up to approximately 80 HU (Figure 1). Female patients and patients with a higher Kellgren-Lawrence grade showed a somewhat larger decrease in cortical bone thickness. Trabecular density decreased less for patients with a higher Kellgren-Lawrence grade, and female patients showed a higher density decrease interiorly while male patients showed a higher decrease exteriorly. None of this was statistically significant. The central areas of both compartments showed an outward shape change, while the outer ring showed inward changes.Conclusion:MAC cortical bone thickness shows a partial decrease after KJD. Trabecular bone density decreased on both sides of the joint, likely as a direct result of the bicompartmental unloading. For both subchondral bone parameters, MAC values became more similar to the LAC, indicating (partial) subchondral bone normalization in the most affected parts of the joint. The bone shape changes may indicate a reversal of typical OA changes, although the inward difference that was seen on the outer edges may be a result of osteophyte-related changes that might have affected the bone segmentation. In conclusion, KJD treatment shows subchondral bone normalization in the first year after treatment, and longer follow-up might show whether these changes are a temporary result of joint unloading or indicate more prolonged bone changes.Disclosure of Interests:None declared.


Bone ◽  
2020 ◽  
Vol 141 ◽  
pp. 115669
Author(s):  
Etsuko Ozaki ◽  
Mami Matsukawa ◽  
Isao Mano ◽  
Daisuke Matsui ◽  
Yutaro Yoneda ◽  
...  

2012 ◽  
Vol 22 (11) ◽  
pp. 1755-1760 ◽  
Author(s):  
José Luis Pérez-Castrillón ◽  
José Antonio Riancho ◽  
Daniel de Luis ◽  
José Ramón Caeiro ◽  
David Guede ◽  
...  

2017 ◽  
Vol 177 (5) ◽  
pp. 409-420 ◽  
Author(s):  
Paula P B Silva ◽  
Fatemeh G Amlashi ◽  
Elaine W Yu ◽  
Karen J Pulaski-Liebert ◽  
Anu V Gerweck ◽  
...  

Context Both acromegaly and adult growth hormone deficiency (GHD) are associated with increased fracture risk. Sufficient data are lacking regarding cortical bone microarchitecture and bone strength, as assessed by microfinite element analysis (µFEA). Objective To elucidate both cortical and trabecular bone microarchitecture and estimated bone strength in men with active acromegaly or GHD compared to healthy controls. Design and subjects Cross-sectional study at a clinical research center, including 48 men (16 with acromegaly, 16 with GHD and 16 healthy controls). Outcome measures Areal bone mineral density (aBMD), cortical and trabecular bone microarchitecture and estimated bone strength (µFEA) at the radius and tibia. Results aBMD was not different between the 3 groups at any skeletal site. At the radius, patients with acromegaly had greater cortical area (P < 0.0001), cortical thickness (P = 0.0038), cortical pore volume (P < 0.0001) and cortical porosity (P = 0.0008), but lower trabecular bone density (P = 0.0010) compared to controls. At the tibia, patients with acromegaly had lower trabecular bone density (P = 0.0082), but no differences in cortical bone microstructure. Compressive strength and failure load did not significantly differ between groups. These findings persisted after excluding patients with hypogonadism. Bone microarchitecture was not deficient in patients with GHD. Conclusions Both cortical and trabecular microarchitecture are altered in men with acromegaly. Our data indicate that GH excess is associated with distinct effects in cortical vs trabecular bone compartments. Our observations also affirm the limitations of aBMD testing in the evaluation of patients with acromegaly.


2019 ◽  
pp. S149-S156
Author(s):  
P. JACKULIAK ◽  
M. KUŽMA ◽  
Z. KILLINGER ◽  
J. PAYER

Osteoporosis is an increasingly widespread disease, as well as diabetes mellitus. It is now accepted that osteoporotic fractures are a serious co-morbidity and complication of diabetes. Despite of good bone mineral density in Type 2 Diabetes (T2DM) patients is the fracture risk elevated. It is due to reduced bone quality. To determine the effect of glycemic compensation on bone density and trabecular bone score (TBS) in T2DM. We analyzed a cohort of 105 postmenopausal women with T2DM. For all patients, central bone density (spinal and lumbar spine) was tested by DXA methodology, glycemic control parameters were assessed, and anthropometric parameters were measured. Bone quality was analyzed using TBS software. The results were statistically processed. Good glycemic compensation with glycated hemoglobin (A1c) value <7.0 % DCCT did not lead to BMD changes in patients with T2DM. However, patients with HbA1c <7 % DCCT had significantly better TBS (1.254±0.148 vs. 1.166±0.094, p=0.01). There was a negative correlation between TBS and glycated hemoglobin (r= -0,112, p<0.05) with glycemic fasting (r= -0.117, p<0.05). The optimal effect on TBS is achieved when all three markers of glycemic compensation (glycated hemoglobin, fasting plasma glucose and postprandial glycemia) are in optimal range. By using ROC curves glycated hemoglobin has the most significant effect on TBS. Optimal glycemic compensation, evaluated by glycated hemoglobin, does not lead to changes in BMD but has a beneficial effect on TBS in T2DM. Good glycemic control is required also for reduction of the risk of osteoporosis and osteoporotic fractures.


2019 ◽  
Vol 14 (4) ◽  
pp. 383-388
Author(s):  
Chin-Yun Pan ◽  
Pao-Hsin Liu ◽  
Yu-Chuan Tseng ◽  
Szu-Ting Chou ◽  
Chao-Yi Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document