Potential probiotic of Lactobacillus strains isolated from the intestinal tracts of pigs and feces of dogs with antibacterial activity against multidrug-resistant pathogenic bacteria

2020 ◽  
Vol 202 (7) ◽  
pp. 1849-1860 ◽  
Author(s):  
Chuen-Fu Lin ◽  
Meng-Yi Lin ◽  
Chao-Nan Lin ◽  
Ming-Tang Chiou ◽  
Jia-Wen Chen ◽  
...  
2020 ◽  
Vol 18 ◽  
Author(s):  
Mulugeta Mulat ◽  
Fazlurrahman Khan ◽  
Archana Pandita

Background: Medicinal plants have been used for treatments of various health ailments and the practices as a remedial back to thousands of years. Currently, plant-derived compounds used as alternative ways of treatment for multidrug-resistant pathogens. Objective: In the present study, various parts of six medical plants such as Solanum nigrum, Azadirachta indica, Vitex negundo, Mentha arvensis, Gloriosa superba, and Ocimum sanctum were extracted for obtaining biological active constituents. Methods: Soxhlet method of extraction was used for obtaining crude extracts. Agar disc diffusion and 96-well plate spectroscopic reading were used to detect the extract’s antibacterial and antibiofilm properties. Results: The obtained extracts were tested for antimicrobial and antibiofilm properties at 25 mg/mL concentrations. Maximum antibacterial activity was observed in O. sanctum chloroform extract (TUCE) against Staphylococcus aureus (24.33±1.52 mm), S. nigrum acetone extract (MAAC) against Salmonella Typhimurium (12.6 ± 1.5 mm) and Pseudomonas aeruginosa (15.0 ±2.0 mm). Only TUCE exhibited antibacterial activity at least a minimum inhibitory concentration of 0.781 mg/mL. Better antibiofilm activities were also exhibited by petroleum extracts of G. superba (KAPE) and S. nigrum (MAPE) against Escherichia coli, S. Typhimurium, P. aeruginosa and S. aureus. Moreover, S. nigrum acetone extract (MAAC) and O. sanctum chloroform extract (TUCE) were showed anti-swarming activity with a reduction of motility 56.3% against P. aeruginosa and 37.2% against S. aureus. MAAC also inhibits Las A activity (63.3% reduction) in P. aeruginosa. Conclusion: Extracts of TUCE, MAAC, MAPE, and KAPE were exhibited antibacterial and antibiofilm properties against the Gram-positive and Gram-negative pathogenic bacteria. GCMS identified chemical constituents are responsible for being biologically active.


2019 ◽  
Vol 7 (1) ◽  
pp. 41-46
Author(s):  
Bhavan Saud ◽  
T. Paudel ◽  
T. Sharma ◽  
M. Gyawali ◽  
G. Dhungana ◽  
...  

Background and Objectives: Antibiotic resistance is emerging as a major public health concern. From the ancient time in history, different plants and herbs have been known to have medicinal value. Rhus javanica has been found to show antibacterial activity against pathogenic bacteria. Thus, present study is designed to investigate the prevalence of urinary tract infection causing bacterial pathogens, its antibiogram and effect of Rhus javanica in standard in-vitro condition against multidrug-resistant. Material and Methods: Cross-sectional study was conducted in urinary tract infection suspected patients visiting a clinic in Kalimati, Kathmandu, from July to December 2017. A total of 133 midstream urine samples were collected and cultured in MacConkey agar and Blood agar media and isolates were identified by standard biochemical tests. Antibiotic susceptibility testing was performed according to Clinical and Laboratory Standard Institute (CLSI) guideline. Leaves extract of Rhus javanica was obtained by maceration using 50.0% methanol and susceptibility testing was performed by using cork borer method in Mueller-Hinton agar. Results: Out of total 133 samples, 35.3%showed significant bacterial growth (i.e. 105 cfu/ml) on agar plate. The most predominant organism was Escherichia coli 17.3%, followed by Enterococcus faecalis 6.8%, Klebsiella pneumoniae 3.8%, Pseudomonas aeruginosa 3.0%, Proteus vulgaris 2.3%, and Staphylococcus aureus 2.3%. Out of 47 isolates, 53.2% were Multi Drug Resistant (MDR). Various concentrations of the crude extract used (25, 50, 75 and 100 mg/ml) showed susceptibility to all the bacterial pathogens isolated, with the diameter of zone of inhibition ranging from 12 to 28 mm. Conclusion: Methanolic extract of Rhus javanica showed antibacterial activity against multidrug-resistant isolates of bacterial uropathogens in standard in-vitro condition.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 360 ◽  
Author(s):  
Gajanan Ghodake ◽  
Min Kim ◽  
Jung-Suk Sung ◽  
Surendra Shinde ◽  
Jiwook Yang ◽  
...  

Herein, we report the use of a cell-free extract for the extracellular synthesis of silver nanoparticles (AgNPs) and their potential to address the growing threat of multidrug-resistant (MDR) pathogenic bacteria. The reproducibility of AgNP synthesis was good and AgNP formation kinetics were monitored as a function of various reaction factors via ultraviolet-visible absorption spectroscopy. This green method was dependent on the alkaline pH of the reaction mixture. With the addition of dilute sodium hydroxide, well-dispersed AgNPs could be produced in large quantities via the classical nucleation and growth route. The new biosynthetic route enabled the production of AgNPs within a narrow size range of 4 to 17 nm. The AgNPs were characterized using various techniques and their antibacterial activity against MDR pathogenic bacteria was evaluated. Field-emission scanning electron microscopic imaging revealed prominent morphological changes in Staphylococcus aureus cells due to mechanical damage, which led to cell death. Escherichia coli cells showed signs of contraction and intracellular fluid discharge as a consequence of disrupted cell membrane function. This new biologically-assisted extracellular strategy is potentially useful for the decontamination of surfaces and is expected to contribute to the development of new products containing AgNPs.


2019 ◽  
Vol 27 (3) ◽  
pp. 305-317 ◽  
Author(s):  
Francisc Andrei Boda ◽  
Anca Mare ◽  
Zoltán István Szabó ◽  
Lavinia Berta ◽  
Augustin Curticapean ◽  
...  

Abstract Snake venoms are aqueous solutions containing peptides and proteins with various biochemical, physiological, and pathophysiological effects. Several snake venom components are used as lead molecules in the development of new active substances for the treatment of cardiovascular diseases, clotting disorders, cancer or pain. Antibacterial activity has also been attributed to snake venoms and proteins isolated from snake venoms. This study provides information regarding the antibacterial activity of venoms obtained from various snake species from the Elapidae and Viperidae families. Minimum inhibitory and bactericidal concentrations of snake venoms were determined for three Gram-positive (Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 29213, and Methicillin-resistant Staphylococcus aureus ATCC 43300) and three Gram-negative (Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 13883, and Pseudomonas aeruginosa ATCC 27853) pathogenic bacteria. The observed effects were correlated with the protein content of each venom, determined using SDS-PAGE analysis and comparison with data available in the literature. Our findings represent a starting point for the selection of snake venoms containing components with potential use as lead molecules in the development of new antibacterial agents, targeting multidrug resistant bacterial strains.


2013 ◽  
Vol 2 (4) ◽  
pp. 270-276 ◽  
Author(s):  
Nabakishore Nayak ◽  
Sibanarayan Rath ◽  
Monali P. Mishra ◽  
Goutam Ghosh ◽  
Rabindra N. Padhy

Background and objective: Antibiotic resistance is emerging as a major public health concern. From the ancient time in history, different plants and herbs have been known to have medicinal value. Rhus javanica has been found to show antibacterial activity against pathogenic bacteria. Thus, present study is designed to investigate the prevalence of urinary tract infection causing bacterial pathogens, its antibiogram and effect of Rhus javanica in standard in-vitro condition against multidrug-resistant. Materials and Methods: Cross-sectional study was conducted in urinary tract infection suspected patients visiting a clinic in Kalimati, Kathmandu, from August to October 2019. A total of 133 midstream urine samples were collected and cultured in MacConkey agar and Blood agar media and isolates were identified by standard biochemical tests. Antibiotic susceptibility testing was performed according to Clinical and Laboratory Standard Institute (CLSI) guideline. Leaves extract of Rhus javanica was obtained by maceration using 50.0% methanol andsusceptibility testing was performed by using cork borer method in Mueller-Hinton agar. Results: Out of total 133 samples, 35.3%showed significant bacterial growth (i.e. 105 cfu/ml) on agar plate. The most predominant organism was Escherichia coli 17.3%, followed by Enterococcus faecalis 6.8%, Klebsiella pneumoniae 3.8%, Pseudomonas aeruginosa 3.0%, Proteus vulgaris 2.3%, and Staphylococcus aureus 2.3%. Out of 47 isolates, 53.2% were Multi Drug Resistant (MDR). Various concentrations of the crude extract used (25, 50, 75 and 100 mg/ml) showed susceptibility to all the bacterial pathogens isolated, with the diameter of zone of inhibition ranging from 12 to 28 mm. Conclusion: Methanolic extract of Rhus javanica showed antibacterial activity against multidrug-resistant isolates of bacterial uropathogens in standard in-vitro condition.


Sign in / Sign up

Export Citation Format

Share Document