Zinc- and cadmium-tolerant endophytic bacteria from Murdannia spectabilis (Kurz) Faden. studied for plant growth-promoting properties, in vitro inoculation, and antagonism

Author(s):  
Ladawan Rattanapolsan ◽  
Woranan Nakbanpote ◽  
Aphidech Sangdee
2021 ◽  
Vol 5 (2) ◽  
pp. 65
Author(s):  
Anderson Emmer ◽  
João Arthur Dos Santos Oliveira ◽  
Andressa Domingos Polli ◽  
Julio Cesar Polonio ◽  
Leonardo Hamamura Alves ◽  
...  

Echeveria laui (Crassulaceae) is commonly commercialized due to its drought-tolerance capacity and to its rosette-shaped aesthetics. Since endophytes associated with plants from a dry or arid environment have scarcely been analyzed as yet, current research comprises the isolation of leaf endophytic bacteria from E. laui (one five-year-old and one two-year-old plants) investigating plant growth-promoting endophytic bacteria which may solubilize phosphate, fix nitrogen, produce exopolysaccharides/IAA and antagonize phytopathogens. Isolation by the maceration methodology provided a colonization rate of 1.98 x109 CFU g-1 for the two-year-old plant and 1.14 x 1010 CFU g-1 for the five-year-old one. All 40 isolates evaluated showed in vitro plant growth-promoting agent’s abilities, with emphasis on EG04, ELG18, and ELP06.  The capacity of the three best bacterial isolates were evaluated under greenhouse conditions in common and black bean (Phaseolus vulgaris L.) plants. Based on the sequencing of the 16S rRNA region and phylogenetic analysis, the three endophytes were identified as Pantoea sp. (ELG04 and ELG18) and Erwinia sp. (ELP06). Under greenhouse conditions, statistically significant differences were found among the plants treated with the three endophytes when compared to control plants for fresh and dry shoot, root biomass and length.


2021 ◽  
Vol 9 (6) ◽  
pp. 1151
Author(s):  
Dorotėja Vaitiekūnaitė ◽  
Sigutė Kuusienė ◽  
Emilija Beniušytė

Soil fertilization is necessary for high-demand crop production in agriculture and forestry. Our current dependence on chemical fertilizers has significant harmful side effects. Biofertilization using microorganisms is a sustainable way to limit the need for chemical fertilizers in various enterprises. Most plant endophytic bacteria have thus far been unstudied for their plant growth promoting potential and hence present a novel niche for new biofertilizer strains. We isolated English oak (Quercus robur) endophytic bacteria and tested them for plant growth promoting traits (PGPTs) such as nitrogen fixation, phosphate mineralization/solubilization, siderophore and indole-3-acetic acid (IAA) production. We also investigated the effect the selected isolate had on poplar (Populus spp.) microshoot vegetative growth parameters in vitro. In total 48 bacterial strains were isolated, attributed to Bacillus, Delftia, Paenibacillus, Pantoea and Pseudomonas genera. All the isolates displayed at least three PGPTs, with 39.6% of the isolates displaying all five (all were Pseudomonas spp.) and 18.75% displaying four. Based on relative abundance, Paenibacillus sp. isolate was selected for the poplar microshoot inoculation study. The isolate had a significant positive effect on poplar microshoot root growth and development. Two tested poplar genotypes both had increased lateral root number and density, fresh and dry root biomass. Furthermore, one genotype had increased length and number of adventitious roots as well as a decrease in fresh aboveground biomass. The root enhancement was attributed to IAA production. We propose this isolate for further studies as a potential biofertilizer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Angélique Rat ◽  
Henry D. Naranjo ◽  
Nikos Krigas ◽  
Katerina Grigoriadou ◽  
Eleni Maloupa ◽  
...  

Alkannin and shikonin (A/S) are enantiomeric naphthoquinones produced in the roots of certain plants from the Boraginaceae family such as Lithospermum spp. and Alkanna spp. They possess antimicrobial, anti-tumoral and wound healing properties. The production of secondary metabolites by Alkanna tinctoria might be influenced by its endomicrobiome. To study the interaction between this medicinal plant and its bacterial endophytes, we isolated bacteria from the roots of wild growing Alkanna tinctoria collected near to Athens and Thessaloniki in Greece. Representative strains selected by MALDI-TOF mass spectrometry were identified by partial 16S rRNA gene sequence analysis. In total, 197 distinct phylotypes of endophytic bacteria were detected. The most abundant genera recovered were Pseudomonas, Xanthomonas, Variovorax, Bacillus, Inquilinus, Pantoea, and Stenotrophomonas. Several bacteria were then tested in vitro for their plant growth promoting activity and the production of cell-wall degrading enzymes. Strains of Pseudomonas, Pantoea, Bacillus and Inquilinus showed positive plant growth properties whereas those of Bacteroidetes and Rhizobiaceae showed pectinase and cellulase activity in vitro. In addition, bacterial responses to alkannin and shikonin were investigated through resistance assays. Gram negative bacteria were found to be resistant to the antimicrobial properties of A/S, whereas the Gram positives were sensitive. A selection of bacteria was then tested for the ability to induce A/S production in hairy roots culture of A. tinctoria. Four strains belonging to Chitinophaga sp., Allorhizobium sp., Duganella sp., and Micromonospora sp., resulted in significantly more A/S in the hairy roots than the uninoculated control. As these bacteria can produce cell-wall degrading enzymes, we hypothesize that the A/S induction may be related with the plant-bacteria interaction during colonization.


Author(s):  
Pooja Suneja ◽  
Rajat Maheshwari ◽  
Namita Bhutani

A total of 22 endophytic bacteria were isolated from roots and nodules of Vigna radiata (mungbean) obtained from Jind district, Haryana. These were characterized on the basis of plant growth promoting traits. Almost all the endophytic bacteria produced IAA with maximum production of 81.63µg/ml by isolate MJiR8. Among these, 100% root isolates and 84.6% nodule isolates resulted in in vitro root growth promotion of mungbean seedlings. All the isolates produced ammonia; eighteen (all root and nine nodule isolates) produced organic acid while only four root isolates were positive for siderophore production. The four isolates produced hydrogen cyanide and out of these only MJiR9 inhibited the growth of fungal pathogens Fusarium oxysporium and Aspergillus niger. All the endophytes were used to determine molecular diversity by ARDRA (Amplified Ribosomal DNA Restriction Analysis) Results revealed that the nodule isolates were more diverse, being present in separate clusters, in comparison to root isolates which were grouped together in cluster III.


2021 ◽  
Vol 16 (3) ◽  
pp. 95-104
Author(s):  
Abdul Munif ◽  
Kholil Ma’ruf

Sclerotium rolfsii merupakan salah satu patogen penting pada kacang tanah yang dapat menyebabkan penyakit busuk pangkal batang. S. rolfsii dapat bertahan hidup di dalam tanah dan membentuk struktur dorman. Penelitian ini bertujuan mengevaluasi bakteri endofit dari tanaman brotowali yang berpotensi sebagai agens hayati yang efektif untuk mengendalikan S. rolfsii dan mengetahui pengaruhnya pada pertumbuhan tanaman kacang tanah. Bakteri endofit diisolasi dari akar dan batang tanaman brotowali dengan metode sterilisasi permukaan. Bakteri endofit yang berhasil diisolasi dari tanaman brotowali ialah 415 isolat dan 153 isolat lolos uji keamanan hayati. Sebanyak 7 isolat bakteri endofit, yaitu BBT25, BBT90, BBT102, BBT106, BBT110, BBT130, dan BSK18 berpotensi menekan S. rolfsii. Isolat BBT106 mampu menekan pertumbuhan S. rolfsii sebesar 73% secara in vitro. Isolat BBT110 dan BSK18 mampu menekan kejadian penyakit busuk pangkal batang sebesar 58% dan 67% pada penelitian di rumah kaca. Ketujuh isolat bakteri endofit brotowali mampu meningkatkan pertumbuhan tanaman kacang tanah pada percobaan di rumah kaca.


2021 ◽  
pp. 66-72
Author(s):  
Alina Pastoshchuk ◽  
Yuliia Yumyna ◽  
Pavlyna Zelena ◽  
Larysa Skivka

The aim of this work was to isolate endophytic bacteria from wheat grains and to evaluate their plant growth promoting traits (PGPT) as well as an inhibitory effect on P. syringae pv. atrofaciens (McCulloch) growth. Endophytic bacteria were isolated by a culture-dependent protocol from the grains of winter wheat variety of Ukrainian selection Podolyanka with high resistance to syringae. Totally 2.7±0.09 CFU/1 g of dry wheat grain were isolated, ten cultivable bacterial isolates were obtained. Spore-forming bacilli predominated in the wheat grain endophytic community. Gram-negative fermenting and non-fermenting rod-shaped bacteria and Gram-positive cocci were also present. Seven out of ten isolates possessed numerous plant growth promoting traits including phosphate solubilization, oligonitrotrophy, and indolic compound producing. Two isolates possessed antagoniscic activity against syringae in vitro along with plant growth promoting features. According to biochemical profiling and mass-spectrophotometric identification, these two isolates were assigned to Paenibacillus and Brevibacillus genera. These endophytic bacteria can be considered as promising objects for agrobiotechnology. However, more research is needed to confirm their biotechnological potential in planta experiments


2006 ◽  
Vol 72 (11) ◽  
pp. 7246-7252 ◽  
Author(s):  
Essaid Ait Barka ◽  
Jerzy Nowak ◽  
Christophe Clément

ABSTRACT In vitro inoculation of Vitis vinifera L. cv. Chardonnay explants with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN, increased grapevine growth and physiological activity at a low temperature. There was a relationship between endophytic bacterial colonization of the grapevine plantlets and their growth at both ambient (26°C) and low (4°C) temperatures and their sensitivities to chilling. The major benefits of bacterization were observed on root growth (11.8- and 10.7-fold increases at 26°C and 4°C, respectively) and plantlet biomass (6- and 2.2-fold increases at 26°C and 4°C, respectively). The inoculation with PsJN also significantly improved plantlet cold tolerance compared to that of the nonbacterized control. In nonchilled plantlets, bacterization enhanced CO2 fixation and O2 evolution 1.3 and 2.2 times, respectively. The nonbacterized controls were more sensitive to exposure to low temperatures than were the bacterized plantlets, as indicated by several measured parameters. Moreover, relative to the noninoculated controls, bacterized plantlets had significantly increased levels of starch, proline, and phenolics. These increases correlated with the enhancement of cold tolerance of the grapevine plantlets. In summary, B. phytofirmans strain PsJN inoculation stimulates grapevine growth and improves its ability to withstand cold stress.


Sign in / Sign up

Export Citation Format

Share Document