Cariniana domestica fruit peels present topical anti-inflammatory efficacy in a mouse model of skin inflammation

2019 ◽  
Vol 392 (5) ◽  
pp. 513-528
Author(s):  
Gessica Brum Milani ◽  
Camila Camponogara ◽  
Mariana Piana ◽  
Cássia Regina Silva ◽  
Sara Marchesan Oliveira
2021 ◽  
Author(s):  
Orlando Vieira Sousa ◽  
Guilherme C. Gonçalves ◽  
Lucas S. Queiroz ◽  
Everton A. Ferreira ◽  
Bruna C. S. Santos ◽  
...  

Abstract Centaurea benedicta L., commonly known as “cardo santo,” is used as a tonic, antidepressant, anti-inflammatory, antibacterial, and antiseptic in traditional medicine. This study evaluated the topical anti-inflammatory potential of an extract (ECB) and cnicin (CNI) from C. benedicta leaves in a mouse model. Activity was assessed using the ear edema method with croton oil, phenol, capsaicin, and histamine as phlogistic agents. Myeloperoxidase (MPO), N-acetyl-β-D-glucosaminidase (NAG), nitric oxide (NO), t umor necrosis factor α (TNF-α), interleukin 6 (IL-6), and histopathology were assessed as markers of edema/inflammation. Interaction profiles between CNI and cyclooxygenase-1 and -2, induced nitric oxide synthase, and glucocorticoid receptor were examined with molecular docking. Twenty-four h after induction of inflammation, ECB and CNI treatments decreased the thickness and weight of ears by 39.59%– 94.72%. MPO, NAG, NO, TNF-α, and IL-6 levels were also reduced. Histopathological, treatments reduced edema thickness, leukocytes, and vasodilation. Inflammation induced by phenol and histamine was inhibited by ECB and CNI, and ECB suppressed capsaicin-induced inflammation. CNI interacts with cyclooxygenase-1 and nitric oxide synthase through conventional hydrogen bonds, indicating inhibition of these enzymes. ECB and its compound cnicin reduce chemically-induced inflammation in mice suggesting new possibilities for the treatment of diseases associated with dermal inflammatory processes.


2016 ◽  
Vol 31 (suppl_1) ◽  
pp. i10-i10
Author(s):  
Lyne Gagnon ◽  
Kathy Hince ◽  
François Sarra-Bournet ◽  
Liette Gervais ◽  
Alexandra Felton ◽  
...  

2021 ◽  
Vol 22 (12) ◽  
pp. 6332
Author(s):  
Nikolaos Perakakis ◽  
Pavlina Chrysafi ◽  
Michael Feigh ◽  
Sanne Skovgard Veidal ◽  
Christos S. Mantzoros

Empagliflozin, an established treatment for type 2 diabetes (T2DM), has shown beneficial effects on liver steatosis and fibrosis in animals and in humans with T2DM, non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH). However, little is known about the effects of empagliflozin on liver function in advanced NASH with liver fibrosis and without diabetes. This study aimed to assess the effects of empagliflozin on hepatic and metabolic outcomes in a diet-induced obese (DIO) and insulin-resistant but non-diabetic biopsy-confirmed mouse model of advanced NASH. Male C57BL/6JRj mice with a biopsy-confirmed steatosis and fibrosis on AMLN diet (high fat, fructose and cholesterol) for 36-weeks were randomized to receive for 12 weeks: (a) Empagliflozin (10 mg/kg/d p.o.), or (b) vehicle. Metabolic outcomes, liver pathology, markers of Kupffer and stellate cell activation and lipidomics were assessed at the treatment completion. Empagliflozin did not affect the body weight, body composition or insulin sensitivity (assessed by intraperitoneal insulin tolerance test), but significantly improved glucose homeostasis as assessed by oral glucose tolerance test in DIO-NASH mice. Empagliflozin improved modestly the NAFLD activity score compared with the vehicle, mainly by improving inflammation and without affecting steatosis, the fibrosis stage and markers of Kupffer and stellate cell activation. Empagliflozin reduced the hepatic concentrations of pro-inflammatory lactosylceramides and increased the concentrations of anti-inflammatory polyunsaturated triglycerides. Empagliflozin exerts beneficial metabolic and hepatic (mainly anti-inflammatory) effects in non-diabetic DIO-NASH mice and thus may be effective against NASH even in non-diabetic conditions.


Sign in / Sign up

Export Citation Format

Share Document