scholarly journals Empagliflozin Improves Metabolic and Hepatic Outcomes in a Non-Diabetic Obese Biopsy-Proven Mouse Model of Advanced NASH

2021 ◽  
Vol 22 (12) ◽  
pp. 6332
Author(s):  
Nikolaos Perakakis ◽  
Pavlina Chrysafi ◽  
Michael Feigh ◽  
Sanne Skovgard Veidal ◽  
Christos S. Mantzoros

Empagliflozin, an established treatment for type 2 diabetes (T2DM), has shown beneficial effects on liver steatosis and fibrosis in animals and in humans with T2DM, non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH). However, little is known about the effects of empagliflozin on liver function in advanced NASH with liver fibrosis and without diabetes. This study aimed to assess the effects of empagliflozin on hepatic and metabolic outcomes in a diet-induced obese (DIO) and insulin-resistant but non-diabetic biopsy-confirmed mouse model of advanced NASH. Male C57BL/6JRj mice with a biopsy-confirmed steatosis and fibrosis on AMLN diet (high fat, fructose and cholesterol) for 36-weeks were randomized to receive for 12 weeks: (a) Empagliflozin (10 mg/kg/d p.o.), or (b) vehicle. Metabolic outcomes, liver pathology, markers of Kupffer and stellate cell activation and lipidomics were assessed at the treatment completion. Empagliflozin did not affect the body weight, body composition or insulin sensitivity (assessed by intraperitoneal insulin tolerance test), but significantly improved glucose homeostasis as assessed by oral glucose tolerance test in DIO-NASH mice. Empagliflozin improved modestly the NAFLD activity score compared with the vehicle, mainly by improving inflammation and without affecting steatosis, the fibrosis stage and markers of Kupffer and stellate cell activation. Empagliflozin reduced the hepatic concentrations of pro-inflammatory lactosylceramides and increased the concentrations of anti-inflammatory polyunsaturated triglycerides. Empagliflozin exerts beneficial metabolic and hepatic (mainly anti-inflammatory) effects in non-diabetic DIO-NASH mice and thus may be effective against NASH even in non-diabetic conditions.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Victoria Svop Jensen ◽  
Christian Fledelius ◽  
Christina Zachodnik ◽  
Jesper Damgaard ◽  
Helle Nygaard ◽  
...  

Abstract Background Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are highly prevalent comorbidities in patients with Type 2 diabetes. While many of these patients eventually will need treatment with insulin, little is known about the effects of insulin treatment on histopathological parameters and hepatic gene expression in diabetic patients with co-existing NAFLD and NASH. To investigate this further, we evaluated the effects of insulin treatment in NASH diet-fed hamsters with streptozotocin (STZ) -induced hyperglycemia. Methods Forty male Syrian hamsters were randomized into four groups (n = 10/group) receiving either a NASH-inducing (high fat, fructose and cholesterol) or control diet (CTRL) for four weeks, after which they were treated with STZ or sham-injected and from week five treated with either vehicle (CTRL, NASH, NASH-STZ) or human insulin (NASH-STZ-HI) for four weeks by continuous s.c. infusion via osmotic minipumps. Results NASH-STZ hamsters displayed pronounced hyperglycemia, dyslipidemia and more severe liver pathology compared to both CTRL and NASH groups. Insulin treatment attenuated dyslipidemia in NASH-STZ-HI hamsters and liver pathology was considerably improved compared to the NASH-STZ group, with prevention/reversal of hepatic steatosis, hepatic inflammation and stellate cell activation. In addition, expression of inflammatory and fibrotic genes was decreased compared to the NASH-STZ group. Conclusions These results suggest that hyperglycemia is important for development of inflammation and profibrotic processes in the liver, and that insulin administration has beneficial effects on liver pathology and expression of genes related to inflammation and fibrosis in a hyperglycemic, dyslipidemic hamster model of NAFLD.


2021 ◽  
Vol 14 (1) ◽  
pp. 123-131
Author(s):  
Doha M. Beltagy ◽  
Khloud Gamal Abdelsalam ◽  
Tarek M Mohamed ◽  
Mai M. El-Keey

Liver cirrhosis is currently the 11th most common cause of death which includes inflammatory, oxidative damage, and immune response. Harmaline has antioxidant and anti-inflammatory mechanisms which can defeat against hepatic cirrhosis pathways. The present work aimed to evaluate the ameliorating effect of harmaline against liver cirrhosis induced by thioacetamide in mice. The study was carried out on sixty male mice divided into three main groups. Control and harmaline groups (GIa and GIb), thioacetamide-group (GII) and harmaline co-treated and treated groups (GIIIa and GIIIb). By the end of the experiment, adiponectin concentrations were measured in serum and liver tissue. Gene expression of adiponectin, transforming growth factor beta-1 (TGF-β1), tissue inhibitor metalloprotease-1(TIMP-1) and peroxisome proliferator activated receptor-gamma (PPAR-γ) were assessed. Some oxidative stress biomarkers as malondialdehyde, reduced glutathione, catalase, superoxide dismutase and nitric oxide were determined. The results indicated that harmaline administration cause significant suppression of oxidative stress and inflammatory response.Inhibition of hepatic stellate cell activation and extracellular matrix deposition were also noticed with a significant decrease in the expression of the profibrotic markers(TGF-β1 and TIMP-1) which have direct effects on adiponectin activation. These results were confirmed by the histological studies in liver tissue. In Conclusion,Harmaline has excellent protective role against liver cirrhosis induced by thioacetamide in mice via its antioxidant and anti-inflammatory properties.It can be therapeutically used as a safe liver support by a dose of 10 mg/kg after furtherin vivo studies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Elena Succurro ◽  
Federica Fraticelli ◽  
Marica Franzago ◽  
Teresa Vanessa Fiorentino ◽  
Francesco Andreozzi ◽  
...  

Gestational diabetes mellitus (GDM) is associated with a high risk of developing type 2 diabetes (T2DM) and cardiovascular disease (CVD). Identifying among GDM women those who are at high risk may help prevent T2DM and, possibly CVD. Several studies have shown that in women with GDM, hyperglycemia at 1 h during an oral glucose tolerance test (OGTT) (1-h PG) is not only associated with an increase in adverse maternal and perinatal outcomes but is also an independent predictor of T2DM. Interestingly, also in pregnant women who did not meet the criteria for a GDM diagnosis, 1-h PG was an independent predictor of postpartum impaired insulin sensitivity and beta-cell dysfunction. Moreover, maternal 1- and 2-h PG levels have been found to be independently associated with insulin resistance and impaired insulin secretion also during childhood. There is evidence that hyperglycemia at 1h PG during pregnancy may identify women at high risk of future CVD, due to its association with an unfavorable CV risk profile, inflammation, arterial stiffness and endothelial dysfunction. Overall, hyperglycemia at 1h during an OGTT in pregnancy may be a valuable prediction tool for identifying women at a high risk of future T2DM, who may then benefit from therapeutic strategies aimed at preventing cardiovascular outcomes.


Author(s):  
HODA A. ALI ◽  
SAHAR H. MOHAMED ◽  
HEND F. ALHARBI ◽  
REHAM M. ALGHESHAIRY

Objective: This study aims to explore the adjuvant effect of multi-strain probiotics with either saffron, cardamom, ginger, or cinnamon herbs to achieve synergistic management for controlling type 2 diabetes (T2D). Methods: Eighty-eight adult male, Wistar rats were used. Eight rats were kept as healthy control. Eighty rats were used to induce type 2 diabetic rats (T2DR) and were randomly assigned to ten groups. One group was an offer to 0.2 ml multi-strain probiotics orally. The rest of T2DR were gavage with 100 mg/kg aqueous extract of saffron, cardamom, ginger, or cinnamon without or with 0.2 ml multi-strain probiotics orally. Bodyweight gain (BWG), and feed efficiency ratio (FER) were recorded. Determination of oral glucose tolerance test (OGTT), serum insulin, C-peptide, HDL, LDL, HDL/total cholesterol ratio were performed. Serum antioxidant activity, Th1and Th2 cytokines and histopathology of the pancreas were done. Results: Comparable with T2DR, solely multi-strain probiotics or with herbs caused a significant reduction in BWG (P<0.05). Groups fed saffron, cardamom, and ginger and enriched with multi-strain probiotic showed significant improvement in OGTT, serum insulin, C-peptide and lipid abnormalities (P<0.05) compared to T2DR. Besides, they had antioxidant and anti-inflammatory effects. The group received ginger alone exerted anti-hyperglycemia and anti-inflammatory effects. However, cinnamon had a moderate anti-diabetic effect and solely probiotics did not show a significant benefit for all parameters except BWG. Conclusion: Cardamom, saffron, and ginger enriched with multi-strain probiotics achieve a synergistic relationship for managing T2D. This finding exhibits a possible new hypothesis to manage diabetes that needs further study.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Eko Farida ◽  
Lilis Nuraida ◽  
Puspo E. Giriwono ◽  
Betty S. L. Jenie

Some lactic acid bacteria (LAB) are observed to be potential probiotics with functional properties such as lowering fasting blood glucose (FBG), as a promising hyperglycemia management. This study investigated the ability and mechanism of Lactobacillus rhamnosus BSL and Lactobacillus rhamnosus R23 on lowering FBG in diabetic rats induced by streptozotocin (STZ). The rats were orally administered with L. rhamnosus BSL and L. rhamnosus R23 by giving 1 mL cell suspension (109 CFU/mL) daily for 30 days. The body weight (BW) was recorded once in three days, and FBG was recorded once in six days. An oral glucose tolerance test (OGTT) was measured 1 week after injection with STZ and before sacrifice. Fecal samples were collected on days 0, 15, and 30 for LAB population and identification, performed by PCR detecting 16S rRNA. Oral administration of L. rhamnosus BSL and L. rhamnosus R23 decreased FBG and improved glucose tolerance via downregulation of glucose-6-phosphatase (G6pc) expression by 0.57- and 0.60-fold change, respectively (P<0.05). The lipid profiles, BUN, creatinine, SGOT, and SGPT were significantly (P<0.05) different between normal and diabetic rats, but they were not significantly (P>0.05) different among diabetic rats. Both strains were effective in increasing fecal LAB population. Molecular identification of the isolated LAB from fecal sample indicated that they were able to survive and pass through the digestive tract. These results suggested that both strains have the ability to manage blood glucose level and become a promising agent to manage hyperglycemia and diabetes.


2019 ◽  
Author(s):  
Li Zhong ◽  
Bo Ning ◽  
Xuan Du ◽  
Huang Shengjie ◽  
Can Cai ◽  
...  

Liver X receptors (LXR) a and b; serve important roles in cholesterol homeostasis, anti-inflammatory processes and the activation of hepatic stellate cells (HSCs). However, the development of therapies for liver fibrosis based on LXR agonists have been hampered due to side-effects such as liver steatosis. In this study, we demonstrated that HSCs expressed high levels of LXRb;, but not LXRa;, and that overexpression of LXRb; suppressed fibrosis and HSC activation in a carbon tetrachloride (CCl4)-induced fibrosis mouse model, without resulting in liver steatosis. Furthermore, Hedgehog (Hh)-regulated proteins, markedly increased in the CCl4-affected liver and mainly expressed in activated HSCs, were repressed under conditions of LXRb; overexpression. In addition, LXRb; knockout led to activation of Hh signaling and triggering of HSC activation, while overexpression of LXRb; led to the inhibition of the Hh pathway and suppression of HSC activation. These results suggest that LXRb; suppresses the activation mechanism of HSCs by inhibiting Hh signaling. In conclusion, LXRb, by restoring the differentiation of HSCs, may be a promising therapeutic target for liver fibrosis without the adverse side-effects of LXRa; activation.


Diagnostics ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 940 ◽  
Author(s):  
Satoshi Oeda ◽  
Kenichi Tanaka ◽  
Ayaka Oshima ◽  
Yasue Matsumoto ◽  
Eisaburo Sueoka ◽  
...  

Evaluating liver steatosis and fibrosis is important for patients with non-alcoholic fatty liver disease. Although liver biopsy and pathological assessment is the gold standard for these conditions, this technique has several disadvantages. The evaluation of steatosis and fibrosis using ultrasound B-mode imaging is qualitative and subjective. The liver stiffness measurement (LSM) and controlled attenuation parameter (CAP) determined using FibroScan are the evidence-based non-invasive measures of liver fibrosis and steatosis, respectively. The LSM and CAP measurements are carried out simultaneously, and the median values of more than ten valid measurements are used to quantify liver fibrosis and steatosis. Here, we demonstrate that the reliability of the LSM depends on the interquartile range to median ratio (IQR/Med), but CAP values do not depend on IQR/Med. In addition, the LSM is affected by inflammation, congestion, and cholestasis in addition to fibrosis, while CAP values are affected by the body mass index in addition to steatosis. We also show that the M probe provides higher LSM values but lower CAP values than the XL probe in the same population. However, there was no statistically significant difference between the diagnostic accuracies of the two probes. These findings are important to understand the reliability of FibroScan measurements and the factors influencing measurement values for all patients.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Tao Yuan ◽  
Juan Li ◽  
Wei-Gang Zhao ◽  
Wei Sun ◽  
Shuai-Nan Liu ◽  
...  

Abstract Background To investigate effects of metformin on the regulation of proteins of white adipose tissue (WAT) and brown adipose tissue (BAT) in obesity and explore the underlying mechanisms on energy metabolism. Methods C57BL/6J mice were fed with normal diet (ND, n = 6) or high-fat diet (HFD, n = 12) for 22 weeks. HFD-induced obese mice were treated with metformin (MET, n = 6). After treatment for 8 weeks, oral glucose tolerance test (OGTT) and hyperinsulinemic–euglycemic clamp were performed to evaluate the improvement of glucose tolerance and insulin sensitivity. Protein expressions of WAT and BAT in mice among ND, HFD, and MET group were identified and quantified with isobaric tag for relative and absolute quantification (iTRAQ) coupled with 2D LC–MS/MS. The results were analyzed by MASCOT, Scaffold and IPA. Results The glucose infusion rate in MET group was increased significantly compared with HFD group. We identified 4388 and 3486 proteins in WAT and BAT, respectively. As compared MET to HFD, differential expressed proteins in WAT and BAT were mainly assigned to the pathways of EIF2 signaling and mitochondrial dysfunction, respectively. In the pathways, CPT1a in WAT, CPT1b and CPT2 in BAT were down-regulated by metformin significantly. Conclusions Metformin improved the body weight and insulin sensitivity of obese mice. Meanwhile, metformin might ameliorate endoplasmic reticulum stress in WAT, and affect fatty acid metabolism in WAT and BAT. CPT1 might be a potential target of metformin in WAT and BAT.


2021 ◽  
Author(s):  
Javier Ávila Román

Obesity is a non-communicable and multifactorial disease that may have a genetic component. However, the main causes of obesity are related to poor eating habits including consumption of high amounts of saturated fat and sugar and a sedentary lifestyle. These habits can lead to pathologies associated to obesity such as overweight, hypertension and type 2 diabetes, increased cholesterol, heart and liver diseases and an increased risk of suffering some types of cancer. Furthermore, changes in the composition of the intestinal microbiota, largely defined by diet, can cause differences in nutrients bioavailability and even in their metabolization, affecting the metabolic state of the individual. Obesity leads to an increase in the basal inflammatory state due to the consumption of saturated fat. This brings the breaking of the “tight junctions” that maintain the integrity of the intestinal barrier, allowing components of the diet or the lipopolysaccharide (LPS) of the bacterial wall to reach the bloodstream, causing the activation of the immune system. In this sense, inflammation is a protective mechanism of the body that involves lipid mediators synthesis, generically called oxylipins (OXLs). OXLs can be pro-inflammatory, anti-inflammatory or pro-resolving in nature. When an inflammatory process begins, the predominant OXLs are those derived from arachidonic acid (ARA) giving rise to leukotrienes (LTs), thromboxanes (TXs) and prostaglandins (PGs). However, once an inflammation threshold is reached, lipoxins (LXs) are synthesized from LTs, which have a pro-resolutive role. Furthermore, the human body can synthesize anti-inflammatory OXLs (resolvins, maresins, protectins and lipoxins) from dietary omega-3 acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). For this reason, in an obesogenic context, there is a higher basal inflammatory state than in a non-obese individual. In this context, we have carried out a study in 8-week-old male Wistar rats, fed a standard diet or cafeteria diet (CAF), which better simulates the high-fat and high-sugar diet in humans in comparison with a commercial pellet for 5 weeks. Four experimental groups were established, two groups were fed the standard diets and another two groups fed the CAF. Besides, one of each group mentioned received a cocktail of antibiotics (ABX) during the last two weeks to generate a dysbiosis of the microbiota. After this time, saphenous vein blood samples were taken for the metabolomic study of circulating lipid mediators and stool samples for intestinal microbiota determination. The model was validated by evaluating body weight gain and an oral glucose tolerance test, observing significant differences between both diets. The diversity of the microbiota was lower in those groups treated with ABX, regardless to diet. It was observed that both treatments with ABX and diet caused changes in the composition of microbiota, where ABX was the most relevant parameter. The Principal Component Analysis (PCA) study evaluates the OXLs profile that each animal shows with respect to 64 OXLs studied by metabolomics. This parameter showed a clear difference in the OXLs profile according to the diet. Correlations were made to know if there was a relationship between the composition of the microbiota and the presence of certain OXLs in blood, and it was concluded that there is a clear relationship between the changes in the microbiota and the profile of these OXLs in blood, which may explain the remarkable role of the microbiota in the inflammatory process. Furthermore, these findings may lead to the development of new obesity markers based on the OXLs profile associated with a microbiota profile. However, more studies are necessary to establish the specific action mechanisms responsible of this association.


Sign in / Sign up

Export Citation Format

Share Document