scholarly journals Effects of voluntary exercise and sex on multiply-triggered heroin reinstatement in male and female rats

2019 ◽  
Vol 237 (2) ◽  
pp. 453-463
Author(s):  
J. R. Smethells ◽  
A. Greer ◽  
B. Dougen ◽  
M. E. Carroll
2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A974-A974
Author(s):  
Marco Antonio Parra-Montes de Oca ◽  
Karen Lissette Garduño-Morales ◽  
Patricia Joseph-Bravo

Abstract Voluntary exercise activates HPT axis1, that contributes to energy mobilization and energy expenditure. Chronic stress in adulthood inhibits HPT response to voluntary wheel running in a sex dependent manner, inhibiting lipolysis of WAT2. We evaluated the effect of chronic stress during adolescence on HPT axis response to voluntary exercise in adulthood3, with emphasis on metabolic response in skeletal muscle and WAT. Wistar male and female rats (N=36 per sex) were divided in an undisturbed group (Control, C; n=18) and one chronic variable stress during adolescence group (CVS; n=18) (males: PND 30-70; females: PND 30-60). As adults (males: PND 84; females: PND: 74) rats were divided in: 1) exercise group: rats placed individually in a cage with a running wheel per 14 nights, 2) sedentary group with ad libitum feeding, 3) sedentary pair-fed group offered the same amount of food consumed by the exercised group, and kept in individual cages during 14 nights (6 rats/group). WAT weight was determined at sacrifice, hormones quantified by RIA and ELISA, gene expression by RT-PCR. Exercise-induced loss of fat mass was not detected in CVS rats. Exercise decreased corticosterone levels in C males and females of both treatments, supporting sex difference on HPA axis reprogramming by CVS. HPT axis response to voluntary exercise is attenuated by CVS also in a sex dimorphic manner: CVS decreased Trh expression in hypothalamic paraventricular nucleus and no changes in thyroid hormones concentration in males, whereas in females, slightly increased TSH, T4 and T3 levels. Sex also influenced the response of skeletal muscle and WAT to CVS. Dio2 and Pgc1a slightly increased expression in skeletal muscle of males, not of females. Adrb3 expression in WAT increased in females, but not in males; exercise-induced stimulation of Hsl expression was not observed in either sex after CVS. These results suggest that CVS imposed during rat adolescence inhibits the responses to voluntary exercise of HPT axis activity of thyroid hormone-targets in WAT and skeletal muscle in sex dependent manner. These changes could lead to reduced mobilization and the utilization of energy fuels coincident with the fatigue observed after exercise in patients with subclinical or clinical hypothyroidism. (Funded: CONACYT 284883, DGAPA IN213419)1Uribe, Endocrinology 155:2020-2030, 2014.2Parra, Front Endocrinol 10(418):1-13, 2019.3Parra, J Endocr Soc 4(Abstract Supp) Abstract SAT-451, 2020.


1961 ◽  
Vol 38 (1) ◽  
pp. 50-58 ◽  
Author(s):  
N. E. Borglin ◽  
L. Bjersing

ABSTRACT Oestriol (oestra-1,3,5(10)-triene-3,16α,17β-triol) is a weakly oestrogenic substance which, however, in contrast to what was formerly believed, is of physiological significance. Its effect is localized largely to the uterine cervix and vagina. Clinical experience argues both for and against an effect on the pituitary gland. This investigation is concerned with the morphological changes in the pituitary gland and adrenal cortex of gonadectomized male and female rats after the injection of oestriol. It was found that oestriol has the same type of action on these glands as other oestrogens, but under the experimental conditions used, this effect proved much weaker than that produced by oestradiol (oestra-1,3,5(10)-triene-3,17β-diol).


1973 ◽  
Vol 74 (1) ◽  
pp. 88-104 ◽  
Author(s):  
T. Jolín ◽  
M. J. Tarin ◽  
M. D. Garcia

ABSTRACT Male and female rats of varying ages were placad on a low iodine diet (LID) plus KClO4 or 6-propyl-2-thiouracil (PTU) or on the same diet supplemented with I (control rats). Goitrogenesis was also induced with LID plus PTU in gonadectomized animals of both sexes. The weight of the control and goitrogen treated animals, and the weight and iodine content of their thyroids were determined, as well as the plasma PBI, TSH, insulin and glucose levels. The pituitary GH-like protein content was assessed by disc electrophoresis on polyacrylamide gels. If goitrogenesis was induced in young rats of both sexes starting with rats of the same age, body weight (B.W.) and pituitary growth hormone (GH) content, it was found that both the males and females developed goitres of the same size. On the contrary, when goitrogenesis was induced in adult animals, it was found that male rats, that had larger B.W. and pituitary GH content than age-paired females, developed larger goitres. However, both male and female rats were in a hypothyroid condition of comparable degree as judged by the thyroidal iodine content and the plasma PBI and TSH levels. When all the data on the PTU or KClO4-treated male and female rats of varying age and B.W. were considered together, it was observed that the weights of the thyroids increased proportionally to B.W. However, a difference in the slope of the regression of the thyroid weight over B.W. was found between male and female rats, due to the fact that adult male rats develop larger goitres than female animals. In addition, in the male rats treated with PTU, gonadectomy decreased the B.W., pituitary content of GH-like protein and, concomitantly, the size of the goitre decreased; an opposite effect was induced by ovariectomy on the female animals. However, when goitrogenesis was induced in weight-paired adult rats of both sexes, the male animals still developed larger goitres than the females. Among all the parameters studied here, the only ones which appeared to bear a consistent relationship with the size of the goitres in rats of different sexes, treated with a given goitrogen, were the rate of body growth and the amount of a pituitary GH-like protein found before the onset of the goitrogen treatment. Moreover, though the pituitary content of the GH-like protein decreased as a consequence of goitrogen treatment, it was still somewhat higher in male that in female animals. The present results suggest that GH may somehow be involved in the mechanism by which male and female rats on goitrogens develop goitres of different sizes, despite equally high plasma TSH levels.


1968 ◽  
Vol 58 (4) ◽  
pp. 600-612 ◽  
Author(s):  
Robert Boyd ◽  
Donald C. Johnson

ABSTRACT The effects of various doses of testosterone propionate (TP) upon the release of luteinizing hormone (LH or ICSH) from the hypophysis of a gonadectomized male or female rat were compared. Prostate weight in hypophysectomized male parabiotic partners was used to evaluate the quantity of circulating LH. Hypophyseal LH was measured by the ovarian ascorbic acid depletion method. Males castrated when 45 days old secreted significantly more LH and had three times the amount of pituitary LH as ovariectomized females. Administration of 25 μg TP daily reduced the amount of LH in the plasma, and increased the amount in the pituitary gland, in both sexes. Treatment with 50 μg caused a further reduction in plasma LH in males, but not in females, while pituitary levels in both were equal to that of their respective controls. LH fell to the same low level in partners of males or females receiving 100 μg TP. When gonadectomized at 39 days, males and females had the same amount of plasma LH, but males had more stored hormone. Pituitary levels were unchanged from controls following treatment with 12.5, 25 or 50 μg TP daily, but plasma values dropped an equal amount in both sexes with the latter two doses. Androgenized males or females, gonadectomized when 39 days old, were very sensitive to the effects of TP and plasma LH was significantly reduced with 12.5 μg daily. Pituitary LH in androgenized males was higher than that of normal males but was reduced to normal by small amounts of TP. The amount of stored LH in androgenized females was not different from that of normal females and it was unchanged by any dose of TP tested. Results are consistent with the conclusion that the male hypothalamic-hypophyseal axis is at least as sensitive as the female axis to the negative feedback effects of TP. Androgenization increases the sensitivity to TP in both males and females.


1988 ◽  
Vol 117 (4_Suppl) ◽  
pp. S191-S192
Author(s):  
M. STOPPOK ◽  
H. SCHRIEFERS ◽  
E. R. LAX

Sign in / Sign up

Export Citation Format

Share Document