Environmental enrichment decreases intravenous self-administration of amphetamine in female and male rats

2001 ◽  
Vol 155 (3) ◽  
pp. 278-284 ◽  
Author(s):  
Bardo M. ◽  
Klebaur J. ◽  
Valone J. ◽  
Deaton C.
2017 ◽  
Vol 234 (23-24) ◽  
pp. 3499-3506 ◽  
Author(s):  
Rebecca S. Hofford ◽  
Jonathan J. Chow ◽  
Joshua S. Beckmann ◽  
Michael T. Bardo

2019 ◽  
Vol 22 (11) ◽  
pp. 710-723 ◽  
Author(s):  
Atul P Daiwile ◽  
Subramaniam Jayanthi ◽  
Bruce Ladenheim ◽  
Michael T McCoy ◽  
Christie Brannock ◽  
...  

Abstract Background Methamphetamine (METH) use disorder is prevalent worldwide. There are reports of sex differences in quantities of drug used and relapses to drug use among individuals with METH use disorder. However, the molecular neurobiology of these potential sex differences remains unknown. Methods We trained rats to self-administer METH (0. 1 mg/kg/infusion, i.v.) on an fixed-ratio-1 schedule for 20 days using two 3-hour daily METH sessions separated by 30-minute breaks. At the end of self-administration training, rats underwent tests of cue-induced METH seeking on withdrawal days 3 and 30. Twenty-four hours later, nucleus accumbens was dissected and then used to measure neuropeptide mRNA levels. Results Behavioral results show that male rats increased the number of METH infusions earlier during self-administration training and took more METH than females. Both male and female rats could be further divided into 2 phenotypes labeled high and low takers based on the degree of escalation that they exhibited during the course of the METH self-administration experiment. Both males and females exhibited incubation of METH seeking after 30 days of forced withdrawal. Females had higher basal mRNA levels of dynorphin and hypocretin/orexin receptors than males, whereas males expressed higher vasopressin mRNA levels than females under saline and METH conditions. Unexpectedly, only males showed increased expression of nucleus accumbens dynorphin after METH self-administration. Moreover, there were significant correlations between nucleus accumbens Hcrtr1, Hcrtr2, Crhr2, and Avpr1b mRNA levels and cue-induced METH seeking only in female rats. Conclusion Our results identify some behavioral and molecular differences between male and female rats that had self-administered METH. Sexual dimorphism in responses to METH exposure should be considered when developing potential therapeutic agents against METH use disorder.


2013 ◽  
Vol 229 (2) ◽  
pp. 227-234 ◽  
Author(s):  
Emily E. Roguski ◽  
Hao Chen ◽  
Burt M. Sharp ◽  
Shannon G. Matta

2009 ◽  
Vol 16 (1) ◽  
pp. 3-7 ◽  
Author(s):  
Mahmoud Hosseini ◽  
Hojjat Allah Alaei ◽  
Asieh Naderi ◽  
Mohammad Reza Sharifi ◽  
Reza Zahed

Author(s):  
James M. Kasper ◽  
Ashley E. Smith ◽  
Sierra N. Miller ◽  
Ara ◽  
William K. Russell ◽  
...  

Author(s):  
Lidia Bellés ◽  
Andrea Dimiziani ◽  
François R. Herrmann ◽  
Nathalie Ginovart

Abstract Rationale Risk factors for drug addiction include genetics, environment, and behavioral traits such as impulsivity and novelty preference (NP), which have been related to deficits in striatal dopamine (DA) D2/3-receptors (D2/3R) and heightened amphetamine (AMPH)-induced DA release. However, the influence of the early rearing environment on these behavioral and neurochemical variables is not clear. Objectives We investigated the influence of early rearing environment on striatal D2/3R availabilities and AMPH-induced DA release in relation to impulsivity, NP, and propensity to drug self-administration (SA) in “addiction-prone” Roman high- (RHA) and “addiction-resistant” Roman low-avoidance (RLA) rats. Methods Animals were reared post-weaning in either environmental enrichment (EE) or impoverishment (EI) and were assessed at adulthood for impulsivity, NP, and propensity to cocaine SA. EE and EI rats were also scanned using single-photon emission computed tomography to concurrently measure in vivo striatal D2/3R availability and AMPH-induced DA release. Results EE vs. EI was associated with heightened impulsivity and a lack of NP in both rat lines. Higher dorsal striatal D2/3R densities were found in RHA EE and higher AMPH-induced DA release in RLA EE. Both impulsivity and NP were negatively correlated to dorsal striatal D2/3R availabilities and positively correlated with AMPH-induced DA release in EI but not in EE. EE vs. EI was related to a faster rate of cocaine intake and elevated active timeout responses in RHAs. Conclusion Our results suggest non-monotonic, environment-dependent, relationships between impulsivity, NP, and D2/3R-mediated signaling, and suggest that EI vs. EE may decrease the reinforcing effects of psychostimulants in predisposed individuals.


Sign in / Sign up

Export Citation Format

Share Document