Explicit solvation effects on low-index Fe surfaces and small particles as adsorbents of Arsenic species: a DFT study

2021 ◽  
Vol 140 (6) ◽  
Author(s):  
Leslie L. Alfonso Tobón ◽  
María M. Branda
2013 ◽  
Vol 29 (1) ◽  
pp. 69-74
Author(s):  
Zabialah Heidarnezhad ◽  
Fatemeh Heidarnezhad ◽  
Fatemeh Heydari ◽  
Elham Bahramian
Keyword(s):  

Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 195
Author(s):  
Eloise C. Lewis ◽  
Nelson Y. Dzade

The mobility of arsenic in aqueous systems can be controlled by its adsorption onto the surfaces of iron oxide minerals such as cobalt ferrite (Fe2CoO4). In this work, the adsorption energies, geometries, and vibrational properties of the most common form of As(III), arsenous acid (H3AsO3), onto the low-index (001), (110), and (111) surfaces of Fe2CoO4 have been investigated under dry and aqueous conditions using periodic density functional theory (DFT) calculations. The dry and hydroxylated surfaces of Fe2CoO4 steadily followed an order of increasing surface energy, and thus decreasing stability, of (001) < (111) < (110). Consequently, the favourability of H3AsO3 adsorption increased in the same order, favouring the least stable (110) surface. However, by analysis of the equilibrium crystal morphologies, this surface is unlikely to occur naturally. The surfaces were demonstrated to be further stabilised by the introduction of H2O/OH species, which coordinate the surface cations, providing a closer match to the bulk coordination of the surface species. The adsorption complexes of H3AsO3 on the hydroxylated Fe2CoO4 surfaces with the inclusion of explicit solvation molecules are found to be generally more stable than on the dry surfaces, demonstrating the importance of hydrogen-bonded interactions. Inner-sphere complexes involving bonds between the surface cations and molecular O atoms were strongly favoured over outer-sphere complexes. On the dry surfaces, deprotonated bidentate binuclear configurations were most thermodynamically favoured, whereas monodentate mononuclear configurations were typically more prevalent on the hydroxylated surfaces. Vibrational frequencies were analysed to ascertain the stabilities of the different adsorption complexes and to assign the As-O and O-H stretching modes of the adsorbed arsenic species. Our results highlight the importance of cobalt as a potential adsorbent for arsenic contaminated water treatment.


2016 ◽  
Vol 9 ◽  
pp. S776-S780 ◽  
Author(s):  
Meisam Shabanian ◽  
Hassan Moghanian ◽  
Mohsen Hajibeygi ◽  
Azin Mohamadi

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Mehdi Zare ◽  
Mohammad Saleheen ◽  
Subrata Kumar Kundu ◽  
Andreas Heyden

AbstractSolvent interactions with adsorbed moieties involved in surface reactions are often believed to be similar for different metal surfaces. However, solvents alter the electronic structures of surface atoms, which in turn affects their interaction with adsorbed moieties. To reveal the importance of metal identity on aqueous solvent effects in heterogeneous catalysis, we studied solvent effects on the activation free energies of the O–H and C–H bond cleavages of ethylene glycol over the (111) facet of six transition metals (Ni, Pd, Pt, Cu, Ag, Au) using an explicit solvation approach based on a hybrid quantum mechanical/molecular mechanical (QM/MM) description of the potential energy surface. A significant metal dependence on aqueous solvation effects was observed that suggests solvation effects must be studied in detail for every reaction system. The main reason for this dependence could be traced back to a different amount of charge-transfer between the adsorbed moieties and metals in the reactant and transition states for the different metal surfaces.


Author(s):  
L. Andrew Staehelin

Freeze-etched membranes usually appear as relatively smooth surfaces covered with numerous small particles and a few small holes (Fig. 1). In 1966 Branton (1“) suggested that these surfaces represent split inner mem¬brane faces and not true external membrane surfaces. His theory has now gained wide acceptance partly due to new information obtained from double replicas of freeze-cleaved specimens (2,3) and from freeze-etch experi¬ments with surface labeled membranes (4). While theses studies have fur¬ther substantiated the basic idea of membrane splitting and have shown clearly which membrane faces are complementary to each other, they have left the question open, why the replicated membrane faces usually exhibit con¬siderably fewer holes than particles. According to Branton's theory the number of holes should on the average equal the number of particles. The absence of these holes can be explained in either of two ways: a) it is possible that no holes are formed during the cleaving process e.g. due to plastic deformation (5); b) holes may arise during the cleaving process but remain undetected because of inadequate replication and microscope techniques.


Author(s):  
W. Krakow ◽  
W. C. Nixon

The scanning electron microscope (SEM) can be run at television scanning rates and used with a video tape recorder to observe dynamic specimen changes. With a conventional tungsten source, a low noise TV image is obtained with a field of view sufficient to cover the area of the specimen to be recorded. Contrast and resolution considerations have been elucidated and many changing specimens have been studied at TV rates.To extend the work on measuring the magnitude of charge and field distributions of small particles in the SEM, we have investigated their motion and electrostatic interaction at TV rates. Fig. 1 shows a time sequence of polystyrene spheres on a conducting grating surface inclined to the microscope axis. In (la) there are four particles present in the field of view, while in (lb) a fifth particle has moved into view.


Author(s):  
George C. Ruben

The formation of shadows behind small particles has been thought to be a geometric process (GP) where the metal cap build up on the particle creates a shadow width the same size as or larger than the particle. This GP cannot explain why gold particle shadow widths are generally larger than the gold particle and may have no appreciable metal cap build up (fig. 1). Ruben and Telford have suggested that particle shadow widths are formed by the width dependent deflection of shadow metal (SM) lateral to and infront of the particle. The trajectory of the deflected SM is determined by the incoming shadow angle (45°). Since there can be up to 1.4 times (at 45°) more SM directly striking the particle than the film surface, a ridge of metal nuclei lateral to and infront of the particle can be formed. This ridge in turn can prevent some SM from directly landing in the metal free shadow area. However, the SM that does land in the shadow area (not blocked by the particle or its ridge) does not stick and apparently surface migrates into the SM film behind the particle.


Sign in / Sign up

Export Citation Format

Share Document