Recent advances in synthetic biology–enabled and natural whole-cell optical biosensing of heavy metals

Author(s):  
Ankur Singh ◽  
Vipin Kumar
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sierra M. Brooks ◽  
Hal S. Alper

AbstractSynthetic biology holds great promise for addressing global needs. However, most current developments are not immediately translatable to ‘outside-the-lab’ scenarios that differ from controlled laboratory settings. Challenges include enabling long-term storage stability as well as operating in resource-limited and off-the-grid scenarios using autonomous function. Here we analyze recent advances in developing synthetic biological platforms for outside-the-lab scenarios with a focus on three major application spaces: bioproduction, biosensing, and closed-loop therapeutic and probiotic delivery. Across the Perspective, we highlight recent advances, areas for further development, possibilities for future applications, and the needs for innovation at the interface of other disciplines.


Author(s):  
H Singh ◽  
Amy Bamrah ◽  
Sanjeev Kumar ◽  
A Deep ◽  
M Khatri ◽  
...  

Recent developments in nanotechnology and engineering have produced a plethora of nanomaterials with amazing physical/chemical properties and enhanced sensing potential for various heavy metals in the environment. Noble metal nanoparticles...


2019 ◽  
Vol 19 (6) ◽  
pp. 452-462 ◽  
Author(s):  
Qiyuan Zhao ◽  
Liping Wang ◽  
Yunzi Luo

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Nicholas E. Matthews ◽  
Carrie A. Cizauskas ◽  
Donovan S. Layton ◽  
Laurence Stamford ◽  
Philip Shapira

AbstractTackling the pressing sustainability needs of society will require the development and application of new technologies. Biotechnology, emboldened by recent advances in synthetic biology, offers to generate sustainable biologically-based routes to chemicals and materials as alternatives to fossil-derived incumbents. Yet, the sustainability potential of biotechnology is not without trade-offs. Here, we probe this capacity for sustainability for the case of bio-based nylon using both deliberative and analytical approaches within a framework of Constructive Sustainability Assessment. We highlight the potential for life cycle CO2 and N2O savings with bio-based processes, but report mixed results in other environmental and social impact categories. Importantly, we demonstrate how this knowledge can be generated collaboratively and constructively within companies at an early stage to anticipate consequences and to inform the modification of designs and applications. Application of the approach demonstrated here provides an avenue for technological actors to better understand and become responsive to the sustainability implications of their products, systems and actions.


2017 ◽  
Vol 45 (4) ◽  
pp. 1035-1043 ◽  
Author(s):  
Jan Ewald ◽  
Martin Bartl ◽  
Christoph Kaleta

Understanding optimality principles shaping the evolution of regulatory networks controlling metabolism is crucial for deriving a holistic picture of how metabolism is integrated into key cellular processes such as growth, adaptation and pathogenicity. While in the past the focus of research in pathway regulation was mainly based on stationary states, more recently dynamic optimization has proved to be an ideal tool to decipher regulatory strategies for metabolic pathways in response to environmental cues. In this short review, we summarize recent advances in the elucidation of optimal regulatory strategies and identification of optimal control points in metabolic pathways. We discuss biological implications of the discovered optimality principles on genome organization and provide examples how the derived knowledge can be used to identify new treatment strategies against pathogens. Furthermore, we briefly discuss the variety of approaches for solving dynamic optimization problems and emphasize whole-cell resource allocation models as an important emerging area of research that will allow us to study the regulation of metabolism on the whole-cell level.


1999 ◽  
Vol 387 (3) ◽  
pp. 235-244 ◽  
Author(s):  
Philippe Corbisier ◽  
Daniel van der Lelie ◽  
Brigitte Borremans ◽  
Ann Provoost ◽  
Victor de Lorenzo ◽  
...  

2018 ◽  
Vol 102 (13) ◽  
pp. 5457-5471 ◽  
Author(s):  
Annesha Sengupta ◽  
Himadri B. Pakrasi ◽  
Pramod P. Wangikar

2020 ◽  
Vol 81 (9) ◽  
pp. 1797-1827 ◽  
Author(s):  
Ya-Nan Xu ◽  
Yinguang Chen

Abstract Industrial development has led to generation of large volumes of wastewater containing heavy metals, which need to be removed before the wastewater is released into the environment. Chemical and electrochemical methods are traditionally applied to treat this type of wastewater. These conventional methods have several shortcomings, such as secondary pollution and cost. Bioprocesses are gradually gaining popularity because of their high selectivities, low costs, and reduced environmental pollution. Removal of heavy metals by sulfate-reducing bacteria (SRB) is an economical and effective alternative to conventional methods. The limitations of and advances in SRB activity have not been comprehensively reviewed. In this paper, recent advances from laboratory studies in heavy metal removal by SRB were reported. Firstly, the mechanism of heavy metal removal by SRB is introduced. Then, the factors affecting microbial activity and metal removal efficiency are elucidated and discussed in detail. In addition, recent advances in selection of an electron donor, enhancement of SRB activity, and improvement of SRB tolerance to heavy metals are reviewed. Furthermore, key points for future studies of the SRB process are proposed.


Sign in / Sign up

Export Citation Format

Share Document