Fast detection of cyclopiazonic acid in cheese using Fourier transform mid-infrared ATR spectroscopy

2007 ◽  
Vol 225 (3-4) ◽  
pp. 585-588 ◽  
Author(s):  
Linda Monaci ◽  
Rosa Vatinno ◽  
Giuseppe E. De Benedetto
2014 ◽  
Vol 5 ◽  
Author(s):  
Asier Largo-Gosens ◽  
Mabel Hernández-Altamirano ◽  
Laura García-Calvo ◽  
Ana Alonso-Simón ◽  
Jesús Álvarez ◽  
...  

2022 ◽  
Author(s):  
Thi Thuy Duong Dinh ◽  
xavier leroux ◽  
Natnicha Koompai ◽  
Daniele Melati ◽  
Miguel Montesinos Ballester ◽  
...  

Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3343 ◽  
Author(s):  
Yi-Fei Pei ◽  
Qing-Zhi Zhang ◽  
Zhi-Tian Zuo ◽  
Yuan-Zhong Wang

Paris polyphylla, as a traditional herb with long history, has been widely used to treat diseases in multiple nationalities of China. Nevertheless, the quality of P. yunnanensis fluctuates among from different geographical origins, so that a fast and accurate classification method was necessary for establishment. In our study, the geographical origin identification of 462 P. yunnanensis rhizome and leaf samples from Kunming, Yuxi, Chuxiong, Dali, Lijiang, and Honghe were analyzed by Fourier transform mid infrared (FT-MIR) spectra, combined with partial least squares discriminant analysis (PLS-DA), random forest (RF), and hierarchical cluster analysis (HCA) methods. The obvious cluster tendency of rhizomes and leaves FT-MIR spectra was displayed by principal component analysis (PCA). The distribution of the variable importance for the projection (VIP) was more uniform than the important variables obtained by RF, while PLS-DA models obtained higher classification abilities. Hence, a PLS-DA model was more suitably used to classify the different geographical origins of P. yunnanensis than the RF model. Additionally, the clustering results of different geographical origins obtained by HCA dendrograms also proved the chemical information difference between rhizomes and leaves. The identification performances of PLS-DA and the RF models of leaves FT-MIR matrixes were better than those of rhizomes datasets. In addition, the model classification abilities of combination datasets were higher than the individual matrixes of rhizomes and leaves spectra. Our study provides a reference to the rational utilization of resources, as well as a fast and accurate identification research for P. yunnanensis samples.


Photonics ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 503
Author(s):  
Joana Alves ◽  
Hugo Pires ◽  
Celso P. João ◽  
Gonçalo Figueira

We present the design of an ultrafast optical parametric chirped pulse amplifier (OPCPA) operating at 3 µm yielding few-cycle pulses and multi-mJ output energy. This design demonstrates that with a configuration of a single crystal or combination of crystals (KTA and MgO:LN) it is possible to achieve output energies above the mJ with sufficient bandwidth to allow compression to just 5-optical cycles. Here, we consider a 1 µm mJ-level picosecond chirped pulse amplifier (CPA), a typical pumping source for this type of non-linear amplifiers. Compression with a simple bulk material enables reaching close to the pulse Fourier-transform limited duration, paving the way to high energy, ultrafast mid-infrared pulses.


2014 ◽  
Vol 56 ◽  
Author(s):  
Shaomin Cai ◽  
Anu Dudhia

The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument which operated on the Envisat satellite from 2002-2012 is a Fourier transform spectrometer for the measurement of high-resolution gaseous emission spectra at the Earth's limb. It operates in the near- to mid-infrared, where many of the main atmospheric trace gases have important emission features. The initial operational products were profiles of Temperature, H2O, O3, CH4, N2O, HNO3, and NO2, and this list was recently extended to include N2O5, ClONO2, CFC-11 and CFC-12. Here we present preliminary results of retrievals of the third set of species under consideration for inclusion in the operational processor: HCN, CF4, HCFC-22, COF2 and CCl4.


Sign in / Sign up

Export Citation Format

Share Document