Fractal fluctuations in muscular activity contribute to judgments of length but not heaviness via dynamic touch

2019 ◽  
Vol 237 (5) ◽  
pp. 1213-1226 ◽  
Author(s):  
Madhur Mangalam ◽  
James D. Conners ◽  
Damian G. Kelty-Stephen ◽  
Tarkeshwar Singh
1994 ◽  
Vol 33 (01) ◽  
pp. 157-160 ◽  
Author(s):  
S. Kruse-Andersen ◽  
J. Kolberg ◽  
E. Jakobsen

Abstract:Continuous recording of intraluminal pressures for extended periods of time is currently regarded as a valuable method for detection of esophageal motor abnormalities. A subsequent automatic analysis of the resulting motility data relies on strict mathematical criteria for recognition of pressure events. Due to great variation in events, this method often fails to detect biologically relevant pressure variations. We have tried to develop a new concept for recognition of pressure events based on a neural network. Pressures were recorded for over 23 hours in 29 normal volunteers by means of a portable data recording system. A number of pressure events and non-events were selected from 9 recordings and used for training the network. The performance of the trained network was then verified on recordings from the remaining 20 volunteers. The accuracy and sensitivity of the two systems were comparable. However, the neural network recognized pressure peaks clearly generated by muscular activity that had escaped detection by the conventional program. In conclusion, we believe that neu-rocomputing has potential advantages for automatic analysis of gastrointestinal motility data.


2020 ◽  
Vol 11 ◽  
Author(s):  
Elena Laura Georgescu Margarint ◽  
Ioana Antoaneta Georgescu ◽  
Carmen Denise Mihaela Zahiu ◽  
Stefan-Alexandru Tirlea ◽  
Alexandru Rǎzvan Şteopoaie ◽  
...  

The execution of voluntary muscular activity is controlled by the primary motor cortex, together with the cerebellum and basal ganglia. The synchronization of neural activity in the intracortical network is crucial for the regulation of movements. In certain motor diseases, such as dystonia, this synchrony can be altered in any node of the cerebello-cortical network. Questions remain about how the cerebellum influences the motor cortex and interhemispheric communication. This research aims to study the interhemispheric cortical communication between the motor cortices during dystonia, a neurological movement syndrome consisting of sustained or repetitive involuntary muscle contractions. We pharmacologically induced lateralized dystonia to adult male albino mice by administering low doses of kainic acid on the left cerebellar hemisphere. Using electrocorticography and electromyography, we investigated the power spectral densities, cortico-muscular, and interhemispheric coherence between the right and left motor cortices, before and during dystonia, for five consecutive days. Mice displayed lateralized abnormal motor signs, a reduced general locomotor activity, and a high score of dystonia. The results showed a progressive interhemispheric coherence decrease in low-frequency bands (delta, theta, beta) during the first 3 days. The cortico-muscular coherence of the affected side had a significant increase in gamma bands on days 3 and 4. In conclusion, lateralized cerebellar dysfunction during dystonia was associated with a loss of connectivity in the motor cortices, suggesting a possible cortical compensation to the initial disturbances induced by cerebellar left hemisphere kainate activation by blocking the propagation of abnormal oscillations to the healthy hemisphere. However, the cerebellum is part of several overly complex circuits, therefore other mechanisms can still be involved in this phenomenon.


2007 ◽  
Vol 15 (3) ◽  
pp. 165-171 ◽  
Author(s):  
Heiner Baur ◽  
Anja Hirschmüller ◽  
Steffen Müller ◽  
Albert Gollhofer ◽  
Frank Mayer
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 560
Author(s):  
Fabiola Spolaor ◽  
Marco Romanato ◽  
Guiotto Annamaria ◽  
Antonella Peppe ◽  
Leila Bakdounes ◽  
...  

The aim of this study was to investigate the effects of Equistasi®, a wearable device, on the relationship between muscular activity and postural control changes in a sample of 25 Parkinson’s disease (PD) subjects. Gait analysis was carried out through a six-cameras stereophotogrammetric system synchronized with two force plates, an eight-channel surface electromyographic system, recording the activity of four muscles bilaterally: Rectus femoris, tibialis anterior (TA), biceps femoris, and gastrocnemius lateralis (GL). The peak of the envelope (PoE) and its occurrence within the gait cycle (position of the peak of the envelope, PPoE) were calculated. Frequency-domain posturographic parameters were extracted while standing still on a force plate in eyes open and closed conditions for 60 s. After the treatment with Equistasi®, the mid-low (0.5–0.75) Hz and mid-high (0.75–1 Hz) components associated with the vestibular and somatosensory systems, PoE and PPoE, displayed a shift toward the values registered on the controls. Furthermore, a correlation was found between changes in proprioception (power spectrum frequencies during the Romberg Test) and the activity of GL, BF (PoE), and TA (PPoE). Results of this study could provide a quantitative estimation of the effects of a neurorehabilitation device on the peripheral and central nervous system in PD.


1985 ◽  
Vol 110 (3_Suppla) ◽  
pp. S11-S18 ◽  
Author(s):  
H. Kopera

Metabolism is the term employed to embrace the various physical and chemical processes occurring within the tissues upon which the growth and heat production of the body depend and from which the energy for muscular activity, for the maintenance of vital activity and for the maintenance of vital functions is derived (Best & Taylor 1950). The destructive processes by which complex substances are converted by living cells into more simple compounds are called catabolism. Anabolism denotes the constructive processes by which simple substances are converted by living cells into more complex compounds, especially into living matter. Catabolism and anabolism are part of all metabolic processes, the carbohydrate, fat and protein metabolism. The term anabolic refers only to substances that exert an anabolic effect on protein metabolism and are unlikely to cause adverse androgenic effects. They shift the equilibrium between protein synthesis and degradation in the body as a whole in the direction of synthesis, either by promoting protein synthesis or reducing its breakdown. The protein anabolic effect of anabolic steroids is not restricted to single organs but is the result of stimulated biosynthesis of cellular protein in the whole organism.


Sign in / Sign up

Export Citation Format

Share Document