The role of cortical areas hMT/V5+ and TPJ on the magnitude of representational momentum and representational gravity: a transcranial magnetic stimulation study

2019 ◽  
Vol 237 (12) ◽  
pp. 3375-3390
Author(s):  
Nuno Alexandre De Sá Teixeira ◽  
Gianfranco Bosco ◽  
Sergio Delle Monache ◽  
Francesco Lacquaniti
Author(s):  
John Rothwell ◽  
Ricci Hannah

Transcranial magnetic stimulation (TMS) can be viewed as interacting with voluntary movement in two ways: it can used to probe the excitability of central nervous system (CNS) pathways before, during, and after a movement; alternatively, it can be used to interfere with movement and give information about the role of different cortical areas in different aspects of a task. This chapter concentrates on the role of single and paired pulse TMS methods that have been covered in detail in previous chapters. Long lasting effects of repetitive TMS (rTMS) are described in later chapters. Almost all of the TMS measures described in previous chapters differ in subjects at rest and during tonic voluntary activity.


2021 ◽  
Vol 37 (1) ◽  
Author(s):  
Mohamed E. Darwish ◽  
Heba W. El-Beshlawy ◽  
Ehab S. Ramadan ◽  
Shimaa M. Serag

Abstract Background Children with autism spectrum disorder (ASD) are almost universally delayed in the acquisition of spoken language as primary means of communication so they tend to have restricted outcomes in terms of independence and integration. Transcranial magnetic stimulation (TMS) is a promising, emerging tool for the study (study and modulate excitability and plasticity, applied in single pulses to investigate corticospinal excitability, pairs of pulses to study intracortical inhibition and facilitation) and potential treatment of ASD. The purpose of this study is to evaluate the role of repetitive TMS in language progress in children with ASD. Results There was a statistically significant clinical improvement in patients receiving active TMS (group I) comparing baseline Childhood Autism Rating Scale (CARS) assessment and after treatment (P ≤ 0.05). There was mild improvement with no significant difference between the patients receiving active TMS (group I) and those of sham TMS (group II), and both groups received language therapy as regard post-treatment CARS. There was significant difference in improvement between the two groups according to eye contact (P ≤ 0.05). There was significant improvement in response to examiner (P ≤ 0.05). There was mild improvement with no statistically significant difference in attention between the two groups. There was significant difference in improvement between the two groups according to active expressive language. There was no statistically significant difference in passive vocabulary between the two groups. Conclusion Repetitive transcranial magnetic stimulation (rTMS) over left inferior frontal gyrus may be a safe and effective way of improving language of ASD. The joint application of rTMS and standard language therapy may lead to more rapid improvement in the language progress of children with ASD.


Sign in / Sign up

Export Citation Format

Share Document