Glucocorticoid-Induced Changes in the Geometry of Osteoclast Resorption Cavities Affect Trabecular Bone Stiffness

2012 ◽  
Vol 92 (3) ◽  
pp. 240-250 ◽  
Author(s):  
Jef Vanderoost ◽  
Kent Søe ◽  
Ditte Marie Horslev Merrild ◽  
Jean-Marie Delaissé ◽  
G. Harry van Lenthe
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jingyan Fu ◽  
Matthew Goldsmith ◽  
Sequoia D. Crooks ◽  
Sean F. Condon ◽  
Martin Morris ◽  
...  

AbstractAnimals in space exploration studies serve both as a model for human physiology and as a means to understand the physiological effects of microgravity. To quantify the microgravity-induced changes to bone health in animals, we systematically searched Medline, Embase, Web of Science, BIOSIS, and NASA Technical reports. We selected 40 papers focusing on the bone health of 95 rats, 61 mice, and 9 rhesus monkeys from 22 space missions. The percentage difference from ground control in rodents was –24.1% [Confidence interval: −43.4, −4.9] for trabecular bone volume fraction and –5.9% [−8.0, −3.8] for the cortical area. In primates, trabecular bone volume fraction was lower by –25.2% [−35.6, −14.7] in spaceflight animals compared to GC. Bone formation indices in rodent trabecular and cortical bone were significantly lower in microgravity. In contrast, osteoclast numbers were not affected in rats and were variably affected in mice. Thus, microgravity induces bone deficits in rodents and primates likely through the suppression of bone formation.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Rosmaliza Ramli ◽  
Mohd Fadhli Khamis ◽  
Ahmad Nazrun Shuid

Recent studies suggested thatEurycoma longifolia, a herbal plant, may have the potential to treat osteoporosis in elderly male. This study aimed to determine the effects ofEurycoma longifoliasupplementation on the trabecular bone microarchitecture of orchidectomised rats (androgen-deficient osteoporosis model). Forty-eight-aged (10–12 months old)Sprague Dawleyrats were divided into six groups of sham-operated (SHAM), orchidectomised control (ORX), orchidectomised + 7 mg/rat testosterone enanthate (TEN) and orchidectomised +Eurycoma longifolia30 mg/kg (EL30), orchidectomised +Eurycoma longifolia60 mg/kg (EL60), orchidectomised +Eurycoma longifolia90 mg/kg (EL90). Rats were euthanized following six weeks of treatment. The left femora were used to measure the trabecular bone microarchitecture using micro-CT. Orchidectomy significantly decreased connectivity density, trabecular bone volume, and trabecular number compared to the SHAM group. Testosterone replacement reversed all the orchidectomy-induced changes in the micro-CT parameters. EL at 30 and 60 mg/kg rat worsened the trabecular bone connectivity density and trabecular separation parameters of orchidectomised rats. EL at 90 mg/kg rat preserved the bone volume. High dose of EL (90 mg/kg) may have potential in preserving the bone microarchitecture of orchidectomised rats, but lower doses may further worsen the osteoporotic changes.


Author(s):  
Ahmad Almhdie-Imjabber ◽  
Ridha Hambli ◽  
Jérôme Touvier ◽  
Olivier Rozenbaum ◽  
Eric Lespessailles ◽  
...  

2018 ◽  
Vol 126 (1) ◽  
pp. 72-82 ◽  
Author(s):  
Eva Klintström ◽  
Benjamin Klintström ◽  
Dieter Pahr ◽  
Torkel B. Brismar ◽  
Örjan Smedby ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (8) ◽  
pp. e0161101 ◽  
Author(s):  
Eva Klintström ◽  
Benjamin Klintström ◽  
Rodrigo Moreno ◽  
Torkel B. Brismar ◽  
Dieter H. Pahr ◽  
...  

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1575
Author(s):  
Vanessa R. Yingling ◽  
Kathryn A. Mitchell ◽  
Megan Lunny

Background.Osteoporosis is “a pediatric disease with geriatric consequences.” Bone morphology and tissue quality co-adapt during ontogeny for sufficient bone stiffness. Altered bone morphology from hypothalamic amenorrhea, a risk factor for low bone mass in women, may affect bone strength later in life. Our purpose was to determine if altered morphology following hypothalamic suppression during development affects cortical bone strength and trabecular bone volume (BV/TV) at maturity.Methods.Female rats (25 days old) were assigned to a control (C) group (n= 45) that received saline injections (.2 cc) or an experimental group (GnRH-a) (n= 45) that received gonadotropin releasing hormone antagonist injections (.24 mg per dose) for 25 days. Fifteen animals from each group were sacrificed immediately after the injection protocol at Day 50 (C, GnRH-a). The remaining animals recovered for 135 days and a subset of each group was sacrificed at Day 185 ((C-R) (n= 15) and (G-R) (n= 15)). The remaining animals had an ovariectomy surgery (OVX) at 185 days of age and were sacrificed 40 days later (C-OVX) (n= 15) and (G-OVX) (n= 15). After sacrifice femurs were mechanically tested and scanned using micro CT. Serum C-terminal telopeptides (CTX) and insulin-like growth factor 1 (IGF-1) were measured. Two-way ANOVA (2 groups (GnRH-a and Control) X 3 time points (Injection Protocol, Recovery, post-OVX)) was computed.Results.GnRH-a injections suppressed uterine weights (72%) and increased CTX levels by 59%. Bone stiffness was greater in the GnRH-a groups compared to C. Ash content and cortical bone area were similar between groups at all time points. Polar moment of inertia, a measure of bone architecture, was 15% larger in the GnRH-a group and remained larger than C (19%) following recovery. Both the polar moment of inertia and cortical area increased linearly with the increases in body weight. Following the injection protocol, trabecular BV/TV was 31% lower in the GnRH-a group compared to C, a similar deficit in BV/TV was also measured following recovery and post-OVX. The trabecular number and thickness were lower in the GnRH-a group compared to control.Conclusion.These data suggest that following a transient delay in pubertal onset, trabecular bone volume was significantly lower and no restoration of bone volume occurred following recovery or post-OVX surgery. However, cortical bone strength was maintained through architectural adaptations in the cortical bone envelope. An increase in the polar moment of inertia offset increased bone resorption. The current data are the first to suppress trabecular bone during growth, and then add an OVX protocol at maturity. Trabecular bone and cortical bone differed in their response to hypothalamic suppression during development; trabecular bone was more sensitive to the negative effects of hypothalamic suppression.


Sign in / Sign up

Export Citation Format

Share Document