Genetic connectivity and historical demography of the blue barred parrotfish (Scarus ghobban) in the western Indian Ocean

2010 ◽  
Vol 157 (7) ◽  
pp. 1475-1487 ◽  
Author(s):  
Shakil Visram ◽  
Ming-Che Yang ◽  
Ruby Moothien Pillay ◽  
Sadri Said ◽  
Oskar Henriksson ◽  
...  
2021 ◽  
Author(s):  
Brandon D. Pickett ◽  
Sheena Talma ◽  
Jessica R. Glass ◽  
Daniel Ence ◽  
Paul D. Cowley ◽  
...  

ABSTRACTBackgroundBonefishes are cryptic species indiscriminately targeted by subsistence and recreational fisheries worldwide. The roundjaw bonefish, Albula glossodonta is the most widespread bonefish species in the Indo-Pacific and is listed as vulnerable to extinction by the IUCN’s Red List due to anthropogenic activities. Whole-genome datasets allow for improved population and species delimitation, which – prior to this study – were lacking for Albula species.ResultsWe generated a high-quality genome assembly of an A. glossodonta individual from Hawai‘i, USA. The assembled contigs had an NG50 of 4.75 Mbp and a maximum length of 28.2 Mbp. Scaffolding yielded an NG50 of 14.49 Mbp, with the longest scaffold reaching 42.29 Mbp. Half the genome was contained in 20 scaffolds. The genome was annotated with 28.3 K protein-coding genes. We then analyzed 66 A. glossodonta individuals and 38,355 SNP loci to evaluate population genetic connectivity between six atolls in Seychelles and Mauritius in the Western Indian Ocean. We observed genetic homogeneity between atolls in Seychelles and evidence of reduced gene flow between Seychelles and Mauritius. The South Equatorial Current could be one mechanism limiting gene flow of A. glossodonta populations between Seychelles and Mauritius.ConclusionsQuantifying the spatial population structure of widespread fishery species such as bonefishes is necessary for effective transboundary management and conservation. This population genomic dataset mapped to a high-quality genome assembly allowed us to discern shallow population structure in a widespread species in the Western Indian Ocean. The genome assembly will be useful for addressing the taxonomic uncertainties of bonefishes globally.


2019 ◽  
Vol 6 (5) ◽  
pp. 172413 ◽  
Author(s):  
E. M. Salas ◽  
G. Bernardi ◽  
M. L. Berumen ◽  
M. R. Gaither ◽  
L. A. Rocha

Population genetic analysis is an important tool for estimating the degree of evolutionary connectivity in marine organisms. Here, we investigate the population structure of the three-spot damselfish Dascyllus trimaculatus in the Red Sea, Arabian Sea and Western Indian Ocean, using 1174 single nucleotide polymorphisms (SNPs). Neutral loci revealed a signature of weak genetic differentiation between the Northwestern (Red Sea and Arabian Sea) and Western Indian Ocean biogeographic provinces. Loci potentially under selection (outlier loci) revealed a similar pattern but with a much stronger signal of genetic structure between regions. The Oman population appears to be genetically distinct from all other populations included in the analysis. While we could not clearly identify the mechanisms driving these patterns (isolation, adaptation or both), the datasets indicate that population-level divergences are largely concordant with biogeographic boundaries based on species composition. Our data can be used along with genetic connectivity of other species to identify the common genetic breaks that need to be considered for the conservation of biodiversity and evolutionary processes in the poorly studied Western Indian Ocean region.


PLoS ONE ◽  
2020 ◽  
Vol 15 (10) ◽  
pp. e0230763
Author(s):  
Sutanto Hadi ◽  
Noviar Andayani ◽  
Efin Muttaqin ◽  
Benaya M. Simeon ◽  
Muhammad Ichsan ◽  
...  

2012 ◽  
Vol 69 (5) ◽  
pp. 842-853 ◽  
Author(s):  
D. Muths ◽  
G. Gouws ◽  
M. Mwale ◽  
E. Tessier ◽  
J. Bourjea

Examining the genetic structure of species allows an estimate of the level of evolutionary connectivity between localities; this information is important for marine biodiversity protection, in particular, for the delineation of marine protected areas. In this context, a total of 601 Lutjanus kasmira (Forsskål, 1775) were sampled in 16 localities of the western Indian Ocean and analyzed with both mitochondrial cytochrome b sequencing and eight microsatellite loci genotyping. Both genetic markers indicate that differentiation was not significant even between samples separated by more than 4000 km. This absence of genetic differentiation among samples was favored by ecological plasticity of the species and is now ensured by resultant high levels of dispersal. Nevertheless, some significant genetic structure was detected for the areas of Mauritius and Moroni, as well as within populations in all localities, which will have to be explained by additional studies on local processes.


2020 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Editors of the JIOWS

The editors are proud to present the first issue of the fourth volume of the Journal of Indian Ocean World Studies. This issue contains three articles, by James Francis Warren (Murdoch University), Kelsey McFaul (University of California, Santa Cruz), and Marek Pawelczak (University of Warsaw), respectively. Warren’s and McFaul’s articles take different approaches to the growing body of work that discusses pirates in the Indian Ocean World, past and present. Warren’s article is historical, exploring the life and times of Julano Taupan in the nineteenth-century Philippines. He invites us to question the meaning of the word ‘pirate’ and the several ways in which Taupan’s life has been interpreted by different European colonists and by anti-colonial movements from the mid-nineteenth century to the present day. McFaul’s article, meanwhile, takes a literary approach to discuss the much more recent phenomenon of Somali Piracy, which reached its apex in the last decade. Its contribution is to analyse the works of authors based in the region, challenging paradigms that have mostly been developed from analysis of works written in the West. Finally, Pawelczak’s article is a legal history of British jurisdiction in mid-late nineteenth-century Zanzibar. It examines one of the facets that underpinned European influence in the western Indian Ocean World before the establishment of colonial rule. In sum, this issue uses two key threads to shed light on the complex relationships between European and other Western powers and the Indian Ocean World.


2012 ◽  
Vol 47 (1) ◽  
pp. 51-66 ◽  
Author(s):  
Loïc Charpy ◽  
Katarzyna A. Palinska ◽  
Raeid M. M. Abed ◽  
Marie José Langlade ◽  
Stjepko Golubic

2021 ◽  
Author(s):  
Christoph A. Rohner ◽  
Roy Bealey ◽  
Bernerd M. Fulanda ◽  
Jason D. Everett ◽  
Anthony J. Richardson ◽  
...  

2019 ◽  
Vol 18 (1) ◽  
pp. 11
Author(s):  
Elena Gadoutsis ◽  
Clare A.K. Daly ◽  
Julie P. Hawkins ◽  
Ryan Daly

2020 ◽  
Vol 33 (2) ◽  
pp. 749-765 ◽  
Author(s):  
Rondrotiana Barimalala ◽  
Ross C. Blamey ◽  
Fabien Desbiolles ◽  
Chris J. C. Reason

AbstractThe Mozambique Channel trough (MCT) is a cyclonic region prominent in austral summer in the central and southern Mozambique Channel. It first becomes evident in December with a peak in strength in February when the Mozambique Channel is warmest and the Mascarene high (MH) is located farthest southeast in the Indian Ocean basin. The strength and the timing of the mean MCT are linked to that of the cross-equatorial northeasterly monsoon in the tropical western Indian Ocean, which curves as northwesterlies toward northern Madagascar. The interannual variability in the MCT is associated with moist convection over the Mozambique Channel and is modulated by the location of the warm sea surface temperatures in the south Indian Ocean. Variability of the MCT shows a strong relationship with the equatorial westerlies north of Madagascar and the latitudinal extension of the MH. Summers with strong MCT activity are characterized by a prominent cyclonic circulation over the Mozambique Channel, extending to the midlatitudes. These are favorable for the development of tropical–extratropical cloud bands over the southwestern Indian Ocean and trigger an increase in rainfall over the ocean but a decrease over the southern African mainland. Most years with a weak MCT are associated with strong positive south Indian Ocean subtropical dipole events, during which the subcontinent tends to receive more rainfall whereas Madagascar and northern Mozambique are anomalously dry.


Sign in / Sign up

Export Citation Format

Share Document