scholarly journals Modeling of thermal performance of multilayer protective clothing exposed to radiant heat

2020 ◽  
Vol 56 (6) ◽  
pp. 1767-1775
Author(s):  
Adam K. Puszkarz ◽  
Waldemar Machnowski ◽  
Anna Błasińska
Tekstilec ◽  
2018 ◽  
Vol 61 (3) ◽  
pp. 179-191 ◽  
Author(s):  
Jawad Naeem ◽  
◽  
Adnan Mazari ◽  
Funda Buyuk Mazari ◽  
Zdenek Kus ◽  
...  

2017 ◽  
Author(s):  
Daniel Madrzykowski ◽  

The goal of this study was to review the available literature to develop a quantitative description of the thermal conditions firefighters and their equipment are exposed to in a structural fire environment. The thermal exposure from the modern fire environment was characterized through the review of fire research studies and fire-ground incidents that provided insight and data to develop a range of quantification. This information was compared with existing standards for firefighting protective equipment to generate a sense of the gap between known information and the need for improved understanding. The comparison of fire conditions with the thermal performance requirements of firefighter protective gear and equipment demonstrates that a fire in a compartment can generate conditions that can fail the equipment that a firefighter wears or uses. The review pointed out the following: 1. The accepted pairing of gas temperature ranges with a corresponding range of heat fluxes does not reflect all compartment fire conditions. There are cases in which the heat flux exceeds the hazard level of the surrounding gas temperature. 2. Thermal conditions can change within seconds. Experimental conditions and incidents were identified in which firefighters would be operating in thermal conditions that were safe for operation based on the temperature and heat flux, but then due to a change in the environment the firefighters would be exposed to conditions that could exceed the protective capabilities of their PPE. 3. Gas velocity is not explicitly considered within the thermal performance requirements. Clothing and equipment tested with a hot air circulating (convection) oven are exposed to gas velocities that measure approximately 1.5 m/s (3 mph). In contrast, the convected hot gas flows within a structure fire could range from 2.3 m/s (5 mph) to 7.0 m/s (15 mph). In cases where the firefighter or equipment would be located in the exhaust portion of a flow path, while operating above the level of the fire, the hot gas velocity could be even higher. This increased hot gas velocity would serve to increase the convective heat transfer rate to the equipment and the firefighter, thereby reducing the safe operating time within the structure. 4. Based on the limited data available, it appears currently available protective clothing enables firefighters to routinely operate in conditions above and beyond the "routine" conditions measured in the fire-ground exposure studies conducted during the 1970s. The fire service and fire standards communities could benefit from an improved understanding of: • real world fire-ground conditions, including temperatures, heat flux, pressure, and chemical exposures; • the impact of convection on the thermal resistance capabilities of firefighting PPE and equipment; and • the benefits of balancing the thermal exposures (thermal performance requirements) across different components of firefighter protective clothing and safety equipment. Because it is unlikely due to trade offs in weight, breathe-ability, usability, cost, etc., that fireproof PPE and equipment will ever be a reality, fire officers and fire chiefs need to consider the capabilities of the protection that their firefighters have when determining fire attack strategies and tactics to ensure that the PPE and equipment is kept within its design operating environment, and that the safety buffer it provides is maintained.


2018 ◽  
Vol 136 (4) ◽  
pp. 1847-1860 ◽  
Author(s):  
Howard O. Njoku ◽  
Ikenna N. Agbo ◽  
Izuchukwu P. Agwuna ◽  
Darlington I. Egeonu ◽  
Felix U. Asuquo ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 689 ◽  
Author(s):  
Grażyna Bartkowiak ◽  
Anna Dąbrowska ◽  
Agnieszka Greszta

The latest directions of research on the design of protective clothing concern the implementation of smart materials, in order to increase its protective performance. This paper presents results on the resistance to thermal factors such as flames, radiant heat, and molten metals, which were obtained for the developed smart textile material with shape memory alloys (SMAs). The laboratory tests performed indicated that the application of the designed SMA elements in the selected textile material system caused more than a twofold increase in the resistance to radiant heat (RHTI24 = 224 s) with an increase of thickness of 13 mm (sample located vertically with a load), while in the case of tests on the resistance to flames, it was equal to 41 mm (sample located vertically without a load) and in the case of tests on the resistance to molten metal, it was 17 mm (sample located horizontally).


2019 ◽  
Vol 69 (06) ◽  
pp. 458-465
Author(s):  
NAEEM JAWAD ◽  
ADNAN MAZARI ◽  
AKCAGUN ENGIN ◽  
HAVELKA ANTONIN ◽  
KUS ZDENEK

This experimental work is an effort to seek the possibility of improvement in thermal protective performance of firefighter protective clothing at different levels of heat flux density. Improvement in thermal protective performance means enhancement in the time of exposure against the heat flux, which will provide extra time to firefighters to perform their duties without suffering from severe injuries. Four different multilayer combinations of firefighter protective clothing were investigated. Each combination consists of outer shell, moisture barrier and thermal liner. Aerogel sheet was also employed as a substitute to thermal barrier. Initially, properties like thermal resistance, thermal conductivity, and water vapor resistance of multilayer fabric assemblies were investigated. Later on these combinations were exposed to different levels of radiant heat flux density i.e. at 10, 20 and 30 kW/m2 as per ISO 6942 standard. It was noted that those combinations in which aerogel blanket was used as thermal barrier acquire greater thermal resistance, water vapor resistance and have less transmitted heat flux density values.


2019 ◽  
Vol 38 (3) ◽  
pp. 212-224 ◽  
Author(s):  
Lijun Wang ◽  
Yehu Lu ◽  
Jiazhen He

To improve thermal protection of protective clothing, temperature-responsive protective fabrics incorporated with shape memory alloy (SMA) springs varying on four different deformation heights and five types arrangement modes were designed. The thermal protection was investigated under radiant heat exposure of 0.39 cal/cm2 s. The results indicated that the air gap between fabric layers produced by SMA springs effectively improved protective performance. The thermal protection of fabrics with different SAM arrangement modes and sizes showed different trends, and the interaction effects of arrangement mode and size were analyzed. Moreover, the optimized arrangement and size of SMA springs were suggested. The regression models were established to assess the relationship between the air gap and thermal protection. This study demonstrated that the combination of flame-resistant fabric with SMA was feasible to develop temperature-responsive protective clothing because it could improve thermal insulating property by producing intelligent air gaps that responded to environment change.


Sign in / Sign up

Export Citation Format

Share Document