Protective performance of thermal protective clothing assemblies exposed to different radiant heat fluxes

2016 ◽  
Vol 17 (5) ◽  
pp. 809-814 ◽  
Author(s):  
V. K. Kothari ◽  
S. Chakraborty
2018 ◽  
Vol 89 (16) ◽  
pp. 3244-3259 ◽  
Author(s):  
Sumit Mandal ◽  
Simon Annaheim ◽  
Andre Capt ◽  
Jemma Greve ◽  
Martin Camenzind ◽  
...  

Fabric systems used in firefighters' thermal protective clothing should offer optimal thermal protective and thermo-physiological comfort performances. However, fabric systems that have very high thermal protective performance have very low thermo-physiological comfort performance. As these performances are inversely related, a categorization tool based on these two performances can help to find the best balance between them. Thus, this study is aimed at developing a tool for categorizing fabric systems used in protective clothing. For this, a set of commercially available fabric systems were evaluated and categorized. The thermal protective and thermo-physiological comfort performances were measured by standard tests and indexed into a normalized scale between 0 (low performance) and 1 (high performance). The indices dataset was first divided into three clusters by using the k-means algorithm. Here, each cluster had a centroid representing a typical Thermal Protective Performance Index (TPPI) value and a typical Thermo-physiological Comfort Performance Index (TCPI) value. By using the ISO 11612:2015 and EN 469:2014 guidelines related to the TPPI requirements, the clustered fabric systems were divided into two groups: Group 1 (high thermal protective performance-based fabric systems) and Group 2 (low thermal protective performance-based fabric systems). The fabric systems in each of these TPPI groups were further categorized based on the typical TCPI values obtained from the k-means clustering algorithm. In this study, these categorized fabric systems showed either high or low thermal protective performance with low, medium, or high thermo-physiological comfort performance. Finally, a tool for using these categorized fabric systems was prepared and presented graphically. The allocations of the fabric systems within the categorization tool have been verified based on their properties (e.g., thermal resistance, weight, evaporative resistance) and construction parameters (e.g., woven, nonwoven, layers), which significantly affect the performance. In this way, we identified key characteristics among the categorized fabric systems which can be used to upgrade or develop high-performance fabric systems. Overall, the categorization tool developed in this study could help clothing manufacturers or textile engineers select and/or develop appropriate fabric systems with maximum thermal protective performance and thermo-physiological comfort performance. Thermal protective clothing manufactured using this type of newly developed fabric system could provide better occupational health and safety for firefighters.


2013 ◽  
Vol 821-822 ◽  
pp. 317-320
Author(s):  
Xiao Wen Luo ◽  
Zhi Qing Shu ◽  
Jun Li

To reveal specific wearing property and principle of polysulfonamide (PSA) blended fabric, this paper aims to make a comparative study of the performance of new PSA blended fabric based on mechanical property, thermal protective performance and, at the same time, explore the performance gap between the different fabrics. Based on the gray fixed weight clustering analysis of gray system theory, several PSA blended fabric have been proved with excellent comprehensive performance, these provided a basis for the selection of thermal protective clothing fabrics.


2013 ◽  
Vol 796 ◽  
pp. 634-638
Author(s):  
Shuai Liu ◽  
Dong Yan Wu ◽  
Xiu E Bai

High-temperature protective clothing is one kind of the most widely used protective clothing. This research regarded the thermal protective clothes for labors work in high-temperature metallurgical steel iron workshop as the study object. In the form of questionnaires, according to the actual high temperature working environment, we extracted the necessary wear performances for thermal protective clothing as factors on the questionnaire survey. Then we issued survey questionnaires to labors work in different workshop in a major metallurgical steel iron industry. By analyzing the statistical information with SPSS, we discussed the subjective performances of the overalls mainly from the protective performance and comfortable performance. The results indicated that the pure cotton overalls, which were used for the investigated metallurgical steel iron enterprise, fall short of the satisfaction requirements in all aspects, for example, thermal insulation, flame retardant, moisture vapor transmission, abrasion resistance and strength. As a result, the study could point out the drawbacks of the high-temperature overalls for ironworkers used in present. This research could have a certain guiding significance in the development and improvement on performances of high-temperature protective overalls. To sum up, this paper could provide scientific basis for future researches to improve the functionalities and wearabilities of the high-temperature protective overall for the ironworkers.


2019 ◽  
Vol 69 (06) ◽  
pp. 458-465
Author(s):  
NAEEM JAWAD ◽  
ADNAN MAZARI ◽  
AKCAGUN ENGIN ◽  
HAVELKA ANTONIN ◽  
KUS ZDENEK

This experimental work is an effort to seek the possibility of improvement in thermal protective performance of firefighter protective clothing at different levels of heat flux density. Improvement in thermal protective performance means enhancement in the time of exposure against the heat flux, which will provide extra time to firefighters to perform their duties without suffering from severe injuries. Four different multilayer combinations of firefighter protective clothing were investigated. Each combination consists of outer shell, moisture barrier and thermal liner. Aerogel sheet was also employed as a substitute to thermal barrier. Initially, properties like thermal resistance, thermal conductivity, and water vapor resistance of multilayer fabric assemblies were investigated. Later on these combinations were exposed to different levels of radiant heat flux density i.e. at 10, 20 and 30 kW/m2 as per ISO 6942 standard. It was noted that those combinations in which aerogel blanket was used as thermal barrier acquire greater thermal resistance, water vapor resistance and have less transmitted heat flux density values.


2017 ◽  
Vol 88 (24) ◽  
pp. 2867-2879 ◽  
Author(s):  
He Jiazhen ◽  
Chen Yan ◽  
Wang Lichuan ◽  
Li Jun

In addition to direct thermal energy from a heating source, a large amount of thermal energy stored in clothing will continuously discharge to the skin after exposure. Therefore, thermal protective clothing may have a dual effect on human skin in reality. An experimental investigation was conducted to study the energy storage within 15 different combinations of clothing layers exposed to low heat fluxes ranging from 2.5 kW/m2 to 8.5 kW/m2. The energy storage process, the distribution of energy storage, and variables critically impacting energy storage, including fabric layers, air gap under clothing, thermal resistance and heat source intensity were discussed. It is demonstrated that the weight and thickness of the fabric are dominating factors affecting energy storage. For a multilayer fabric system, 36–57% of the total amount of energy is stored in the outer shell. The neighboring layer proves to be very important for the energy storage in an individual fabric. The air gap that exists between the fabric and the skin exerts an influence on the energy storage within fabric layers. In addition, a linear correlation is observed between the energy storage and the total thermal resistance of a fabric system. The research findings will be brought to researchers to better understand the mechanism and factors associated with energy storage and help develop new fabric combinations in order to minimize heat transmission to the skin.


2017 ◽  
Vol 25 (0) ◽  
pp. 65-74 ◽  
Author(s):  
Jawad Naeem ◽  
Adnan Ahmed Mazari ◽  
Antonin Havelka

A fire fighter garment is multilayer protective clothing with an outer shell, moisture barrier and thermal barrier, respectively. Fire fighters encounter different levels of radiant heat flux while performing their duties. This review study acknowledges the importance and performance of fire fighter protective clothing when subjected to a low level of radiation heat flux as well as the influence of air gaps and their respective position on the thermal insulation behaviour of multilayer protective clothing. Thermal insulation plays a vital role in the thermal comfort and protective performance of fire fighter protective clothing (FFPC). The main emphasis of this study was to analyse the performance of FFPC under different levels of radiant heat flux and how the exposure time of fire fighters can be enhanced before acquiring burn injuries. The preliminary portion of this study deals with the modes of heat transportation within textile fabrics, the mechanism of thermal equilibrium of the human body and the thermal protective performance of firefighter protective clothing. The middle  portion is concerned with thermal insulation and prediction of the physiological load of  FFPC. The last section deals with numerical models of heat transmission through firefighter protective clothing assemblies and possible utility of aerogels and Phase Change Materials  (PCMs) for enhancing the thermal protective performance of FFPC.


2010 ◽  
Vol 81 (3) ◽  
pp. 311-323 ◽  
Author(s):  
Guowen Song ◽  
Stephen Paskaluk ◽  
Rohit Sati ◽  
Elizabeth M Crown ◽  
J. Doug Dale ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document