Volume-sensitive Chloride Channels Involved in Apoptotic Volume Decrease and Cell Death

2006 ◽  
Vol 209 (1) ◽  
pp. 21-29 ◽  
Author(s):  
Y. Okada ◽  
T. Shimizu ◽  
E. Maeno ◽  
S. Tanabe ◽  
X. Wang ◽  
...  
2010 ◽  
Vol 298 (1) ◽  
pp. C14-C25 ◽  
Author(s):  
K. A. Poulsen ◽  
E. C. Andersen ◽  
C. F. Hansen ◽  
T. K. Klausen ◽  
C. Hougaard ◽  
...  

Changes in cell volume and ion gradients across the plasma membrane play a pivotal role in the initiation of apoptosis. Here we explore the kinetics of apoptotic volume decrease (AVD) and ion content dynamics in wild-type (WT) and multidrug-resistant (MDR) Ehrlich ascites tumor cells (EATC). In WT EATC, induction of apoptosis with cisplatin (5 μM) leads to three distinctive AVD stages: an early AVD1 (4–12 h), associated with a 30% cell water loss; a transition stage AVDT (∼12 to 32 h), where cell volume is partly recovered; and a secondary AVD2 (past 32 h), where cell volume was further reduced. AVD1 and AVD2 were coupled to net loss of Cl−, K+, Na+, and amino acids (ninhydrin-positive substances), whereas during AVDT, Na+ and Cl− were accumulated. MDR EATC was resistant to cisplatin, showing increased viability and less caspase 3 activation. Compared with WT EATC, MDR EATC underwent a less pronounced AVD1, an augmented AVDT, and a delay in induction of AVD2. Changes in AVD were associated with inhibition of Cl− loss during AVD1, augmented NaCl uptake during AVDT, and a delay of Cl− loss during AVD2. Application of the anion channel inhibitor NS3728 inhibited AVD and completely abolished the differences in AVD, ionic movements, and caspase 3 activation between WT and MDR EATC. Finally, the maximal capacity of volume-regulated anion channel was found to be strongly repressed in MDR EATC. Together, these data suggest that impairment of AVD, primarily via modulation of NaCl movements, contribute to protection against apoptosis in MDR EATC.


Author(s):  
Carl D. Bortner ◽  
John A. Cidlowski

The movement of water across the cell membrane is a natural biological process that occurs during growth, cell division, and cell death. Many cells are known to regulate changes in their cell volume through inherent compensatory regulatory mechanisms. Cells can sense an increase or decrease in their cell volume, and compensate through mechanisms known as a regulatory volume increase (RVI) or decrease (RVD) response, respectively. The transport of sodium, potassium along with other ions and osmolytes allows the movement of water in and out of the cell. These compensatory volume regulatory mechanisms maintain a cell at near constant volume. A hallmark of the physiological cell death process known as apoptosis is the loss of cell volume or cell shrinkage. This loss of cell volume is in stark contrast to what occurs during the accidental cell death process known as necrosis. During necrosis, cells swell or gain water, eventually resulting in cell lysis. Thus, whether a cell gains or loses water after injury is a defining feature of the specific mode of cell death. Cell shrinkage or the loss of cell volume during apoptosis has been termed apoptotic volume decrease or AVD. Over the years, this distinguishing feature of apoptosis has been largely ignored and thought to be a passive occurrence or simply a consequence of the cell death process. However, studies on AVD have defined an underlying movement of ions that result in not only the loss of cell volume, but also the activation and execution of the apoptotic process. This review explores the role ions play in controlling not only the movement of water, but the regulation of apoptosis. We will focus on what is known about specific ion channels and transporters identified to be involved in AVD, and how the movement of ions and water change the intracellular environment leading to stages of cell shrinkage and associated apoptotic characteristics. Finally, we will discuss these concepts as they apply to different cell types such as neurons, cardiomyocytes, and corneal epithelial cells.


2004 ◽  
Vol 18 (5) ◽  
pp. 531-538 ◽  
Author(s):  
Alexandra d'Anglemont de Tassigny ◽  
Rachid Souktani ◽  
Patrick Henry ◽  
Bijan Ghaleh ◽  
Alain Berdeaux

APOPTOSIS ◽  
2007 ◽  
Vol 12 (10) ◽  
pp. 1755-1768 ◽  
Author(s):  
Gerhard Krumschnabel ◽  
Tanja Maehr ◽  
Muhammad Nawaz ◽  
Pablo J. Schwarzbaum ◽  
Claudia Manzl

Sign in / Sign up

Export Citation Format

Share Document