scholarly journals Restricted MHC class I A locus diversity in olive and hybrid olive/yellow baboons from the Southwest National Primate Research Center

2018 ◽  
Vol 70 (7) ◽  
pp. 449-458 ◽  
Author(s):  
Rebecca A. Morgan ◽  
Julie A. Karl ◽  
Hailey E. Bussan ◽  
Katelyn E. Heimbruch ◽  
David H. O’Connor ◽  
...  
2017 ◽  
Vol 4 (1) ◽  
pp. 117-125
Author(s):  
Ivanela Kondova ◽  
Gerco Braskamp ◽  
Peter J. Heidt ◽  
Wim Collignon ◽  
Tom Haaksma ◽  
...  

Abstract. Endometriosis is a poorly understood common debilitating women's reproductive disorder resulting from proliferative and ectopic endometrial tissue associated with variable clinical symptoms including dysmenorrhea (painful menstrual periods), dyspareunia (pain on intercourse), female infertility, and an increased risk of malignant transformation. The rhesus macaque (Macaca mulatta) develops a spontaneous endometriosis that is very similar to that seen in women. We hypothesized that specific major histocompatibility complex (MHC) alleles may contribute to the pathogenesis of endometriosis. As part of a collaboration between the Biomedical Primate Research Centre (BPRC) in the Netherlands and the New England Primate Research Center (NEPRC) in the United States, we analyzed DNA sequences of MHC class I (Macaca mulatta, Mamu-A1) and class II (Mamu-DRB) alleles from rhesus macaques with endometriosis and compared the allele frequencies with those of age-matched healthy macaques. We demonstrate that two MHC class I alleles are overrepresented in diseased macaques compared to controls: Mamu-A1*001, 33.3 % in BPRC animals with endometriosis vs. 11.6 % in healthy macaques (p =  0.007), and Mamu-A1*007, 21.9 % NEPRC rhesus macaques vs. 6.7 %, (p =  0.003). We provide evidence that select MHC class I alleles are associated with endometriosis in rhesus macaques and suggest that the disease pathogenesis contribution of MHC class I warrants further research.


2012 ◽  
Vol 28 (3) ◽  
pp. 217 ◽  
Author(s):  
Kyoung-Min Kim ◽  
Sang-Rae Lee ◽  
Kwon-Sik Chang ◽  
Yong-Hoon Lee ◽  
Sung-Woo Kim ◽  
...  

2020 ◽  
Author(s):  
Cynthia L Bethea ◽  
Judy L Cameron

Abstract STUDY QUESTION What is the underlying neuropathology in a cynomolgus macaque model of functional hypothalamic amenorrhoea (FHA) and can it be normalized to restore ovulation? SUMMARY ANSWER Anovulatory monkeys exhibited increased hypothalamic norepinephrine (NE), kisspeptin and gonadotropin-releasing hormone (GnRH) in the early follicular phase, but administration of the NE reuptake inhibitor (NRI), reboxetine (REB), restored ovulation during stress and normalized NE, kisspeptin and GnRH. WHAT IS KNOWN ALREADY Female cynomolgus macaques, like women, show individual reproductive sensitivity to modest psychosocial and metabolic stress. During stress, resilient females ovulate through two menstrual cycles whereas stress-sensitive (SS) macaques immediately cease ovulation. On Day 5 of a non-stressed menstrual cycle, resilient macaques have less NE synthesizing enzyme [dopamine β-hydroxylase (DBH)], kisspeptin and GnRH innervation of the medial basal hypothalamus but more endogenous serotonin than SS macaques. Stress increased DBH/NE, kisspeptin and GnRH but did not alter serotonin. STUDY DESIGN, SIZE, DURATION In a longitudinal design, 27 adult (7–13 years) female cynomolgus macaques (Macaca fascicularis) with three different levels of sensitivity to stress were monitored with daily vaginal swabs and frequent serum progesterone (P) measurements. Three 90-day experimental periods called ‘Cycle Sets’ were monitored. A Cycle Set consisted of one ovulatory menstrual cycle without stress, and two cycles, or 60 days, with modest stress. Each Cycle Set was followed by a rest period. During a Cycle Set, individuals were either untreated (placebo) or administered escitalopram (CIT) or REB. Ultimately, half of each sensitivity group was euthanized during stress with CIT or REB treatment and the hypothalamus was obtained. Neurobiological endpoints were compared between CIT and REB treatment groups in stress resilient and SS monkeys. PARTICIPANTS/MATERIALS, SETTING, METHODS The monkeys were housed at the University of Pittsburgh primate facility for the duration of the experiments. Upon euthanasia, their brains and serum samples were shipped to the Oregon National Primate Research Center. The hypothalamus was examined with immunohistochemistry for the expression of DBH (a marker for NE axons), kisspeptin and GnRH. P was measured in the serum samples by radioimmunoassay. MAIN RESULTS AND THE ROLE OF CHANCE Daily administration of REB restored ovulation in 9 of 10 SS animals during stress. Of note, REB significantly increased P secretion during stress in the most sensitive group (P = 0.032), which indicates ovulation. CIT lacked efficacy. REB significantly reduced DBH/NE, kisspeptin and GnRH axon density in the hypothalamus relative to CIT treatment (P = 0.003. 0.018 and 0.0001, respectively) on Day 5 of the menstrual cycle in resilient and sensitive groups. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION The US FDA has not approved REB for human use, although it is used in Europe for the treatment of depression/anxiety as EdronaxTR. Whether REB could be useful for the treatment of FHA in women has not been determined. WIDER IMPLICATIONS FOR THE FINDINGS The use of an NRI to treat FHA is a novel approach and the potential reinstatement of ovulation could be straightforward compared to current treatment protocols. The underlying neurobiology provides a compelling case for treating the origin of the pathology, i.e. elevated NE, rather than circumventing the hypothalamus altogether with gonadotropins, which have associated risks such as hyperstimulation syndrome or multiple births. STUDY FUNDING/COMPETING INTEREST(S) Portions of this study were supported by NIH grant HD062864 to C.L.B., NIH grant HD62618 to J.L.C. and C.L.B. and 1P51 OD011092 for the operation of the Oregon National Primate Research Center. There were no competing interests.


2021 ◽  
Vol 10 (31) ◽  
Author(s):  
Kathie A. Mihindukulasuriya ◽  
Lindsay Droit ◽  
Margaret H. Gilbert ◽  
Peter J. Didier ◽  
Anne Paredes ◽  
...  

We report the draft genome sequences of five novel members of the family Picornaviridae that were isolated from the stool of rhesus macaques ( Macaca mulatta ) with chronic diarrhea. The strains were named NOLA-1 through NOLA-5 because the macaques were residents of the Tulane National Primate Research Center.


Sign in / Sign up

Export Citation Format

Share Document